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Abstract— Two-photon absorption (TPA) is an important
quantum process in the light-matter interaction. When more
than one TPA pathway exists in a quantum system, it is nec-
essary to utilize the interference of these pathways to increase
the sum TPA amplitude. A simple block scheme (Phys. Rev.
A 2013, 88, 053427) is proposed to maximize the constructive
interference of two TPA pathways in a four-level diamond-
configuration quantum system. It can also be expanded to
control multiple TPA pathways (Chin. J. Chem. Phys. 2015,
28, 426). The spectral boundaries in the scheme is related to
the energy structure of the system. This work tries to give an
analysis of the boundaries for general four-level and five-level
quantum systems, which have two and three TPA pathways,
respectively. How the boundaries and thus the number of blocks
change with the energy structure will be explored.

I. INTRODUCTION

THE control of quantum dynamics is of scientific impor-

tance both in physics and automation. Many strategies

have been proposed to manipulate quantum dynamics, such

as feedback control [1], [2], [3], [4] and coherent control

[5], [6], [7]. Two-photon absorption (TPA) is a widely

investigated fundamental process, and different strategies of

coherent control can be employed to enhance the TPA ampli-

tude [5], [8], [9], [10], [11]. Silberberg et al. [10] suggested

that a resonant TPA rate can be enhanced via constructive

interference between non-resonant contributions, and a π/2
step scheme was proposed. Lee et al. [11] investigated

the quantum interference control of a four-level diamond-

configuration quantum system, and the control idea was just

to tune the interference between two TPA pathways. In their

scheme, the whole spectrum is divided into eight blocks,

and the seven spectral boundaries depend on the resonant

frequencies and the dipole moments. The strategy can be

generalized to more general quantum systems including N
TPA pathways, and an 4N -block scheme could be a practical

choice for coherent control of these pathways [12].

Considering a typical TPA process induced by a weak

femto-second laser pulse ε (t), the transition amplitude from
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the initial ground state |g〉 to the final state |f〉 is

U =− π
μfnμng

�2
E (ωng)E (ωfn)

+ i
μfnμng

�2
℘

ˆ ∞
−∞

E (ω)E (ωfg − ω)

ωng − ω
dω. (1)

where the E(ω) is the Fourier transform of ε(t), ωng and

ωfn = ωfg − ωng are the resonance frequencies, and ℘ is

the principal value of Cauchy. The right hand side of this

equation clearly has two (resonant and non-resonant) terms.

For simplicity, the following definitions are adopted

Dn =
μfnμng

�2
, (2a)

ω̃ = ωfg − ω. (2b)

For a general quantum system involving more than one

TPA pathway, the sum transition amplitude can be written

as

U =− π
∑
n

DnE (ωng)E (ωfn)

+ i
∑
n

Dn℘

ˆ ∞
−∞

E (ω)E (ω̃)

ωng − ω
dω. (3)

In the 4N -block scheme [12] mentioned above, the spec-

tral boundaries are the resonant frequencies ωng , ωfn and

ωfg/2, some critical frequencies ωc, and ωfg − ωc. The

critical frequencies ωc are the roots of the following equation

with E (ω) being transform limited (TL) pulses

f (ω) =
∑
n

Dn
E (ω)E (ω̃)

ωng − ω
= 0. (4)

It is easy to see that f(ω) is just the integral kernel of

the non-resonant term, and the integration over different

regions across these boundaries will change its plus-minus

sign for TL pulses. The principle in the block scheme is to

make the non-resonant terms over different spectral blocks

align in-phase with the resonant terms for achieving maximal

constructive interference.

The number of blocks is 4N when Eq. (4) has N − 1
real roots, and cases can be different when imaginary roots

appear. In this work, we will explore how the boundaries and

thus the number of blocks change with the energy structure

for some simple multi-level systems. Lee’s scheme only

considers the dominant non-resonant contributions by just

making
∑

n Dn
1

ωng−ω = 0. We would propose another block

scheme to maximize the sum amplitude of two TPA pathways

by taking all non-resonant contributions into account.
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Fig. 1. (Color online) A five-level model system, and the three different
colored arrows denote the three TPA pathways.

In Lee’s scheme, for a four-level system involving two

TPA pathways, the equation
∑

n Dn
1

ωng−ω = 0 is linear

and thus certainly has one real root, which leads to a eight-

block control scheme. In this work, we prove that there are

always two real roots when we extend Lee’s scheme to a

five-level system with three TPA pathways, which leads to a

twelve-block control scheme. Situation is quite different for

the new block scheme, and number of roots of Eq. (4) are

discussed for a four-level system with two pathways.

II. BOUNDARY ANALYSIS IN LEE’S SCHEME FOR A

FIVE-LEVEL SYSTEM

For a five-level quantum system having three TPA path-

ways (shown as Fig. 1), the boundary equation is

∑
n=a,b,c

Dn

ωng − ω
= 0, (5)

which leads to

Aω2 −Bω + C = 0, (6)

with

A =
∑

n=a,b,c

Dn, (7a)

B =
∑

n=a,b,c

⎛
⎝Dn

n′ �=n∑
n′=a,b,c

ωn′g

⎞
⎠ , (7b)

C =
∑

n=a,b,c

⎛
⎝Dn

n′ �=n∏
n′=a,b,c

ωn′g

⎞
⎠ . (7c)

The discriminant Δ = B2 − 4AC can also written as a

quadratic function about ωag ,

Δ = A′ω2
ag +B′ωag + C ′, (8)

Here A′, B′, C’ are defined as

A′ =(Db +Dc)
2
, (9a)

B′ =2 (Db +Dc) [Da (ωbg + ωcg) +Dbωcg +Dcωbg]

− 4 (Dbωcg +Dcωbg)
∑

n=a,b,c

Dn, (9b)

C ′ = [Da (ωbg + ωcg) +Dbωcg +Dcωbg]
2

− 4Daωbgωcg

∑
n=a,b,c

Dn. (9c)

Then the discriminant can be finally written as

� =A′
(
ωag +

B′

2A′

)2

+ 4

(
ωbg − ωcg

Db +Dc

)2 ∏
n=a,b,c

Dn

∑
n=a,b,c

Dn, (10)

which is always equal or larger than zero. It is obvious that

� = 0 indicates ωbg = ωcg, and ωag +
B′
2A′ = 0 will further

lead to ωag = ωbg = ωcg . That means Eq. (5) always has

two real roots for a five-level quantum system when any two

of the intermediate energy levels are not degenerate.

III. NEW BLOCK SCHEME FOR A FOUR-LEVEL SYSTEM

In Lee’s scheme, only the dominant non-resonant contribu-

tions are considered to obtain the boundaries making f(ω)
being zero. In this section, a new scheme is proposed to

obtain the accurate boundaries by taking all non-resonant

contributions into account. The Cauchy principle value in Eq.

(3) can be further simplified by the variable transformation

ω = ωfg − ω̃,

℘

ˆ ∞
−∞

E (ω)E (ω̃)

ωng − ω
dω

=℘

(ˆ ωfg/2

−∞

E (ω)E (ω̃)

ωng − ω
dω +

ˆ ∞
ωfg/2

E (ω)E (ω̃)

ωng − ω
dω

)

=℘

(ˆ ∞
ωfg/2

E (ω)E (ω̃)

ωng − ωfg + ω̃
dω̃ +

ˆ ∞
ωfg/2

E (ω)E (ω̃)

ωng − ω
dω

)

=℘

(ˆ ∞
ωfg/2

E (ω)E (ω̃)

ω̃ − ωfn
dω̃ +

ˆ ∞
ωfg/2

E (ω)E (ω̃)

ωng − ω
dω

)

=℘

ˆ ∞
ωfg/2

E (ω)E (ω̃)

(
1

ω − ωfn
+

1

ωng − ω

)
dω. (11)

The new spectral boundaries ωc are roots of the following

equation

fT (ω) =
∑
n

Dn

(
1

ω − ωfn
+

1

ωng − ω

)

=
∑
n

Dnλn

(ω − ωng) (ω − ωfn)
= 0. (12)

where λn = ωfn−ωng . As seen in Eq. (11), the integration

region is (ωfg/2, ∞), so this new scheme considers all the

photon pairs adding up to ωfn while Lee’s scheme only

considers the dominant ones.
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Fig. 2. (Color online) A four-level system with two TPA pathways denoted
by left and right arrows. The horizontal dashed line corresponds to the
frequency of ωfg/2, with ωfg being the frequency difference between
levels |g〉 and |f〉.

Only the case of N = 2 will be analysed below since the

above equation is more complex than that in Lee’s scheme,

that is
∑

n Dn
1

ωng−ω = 0. Two intermediate levels are |a〉
and |b〉 as shown in Fig. 2. Then Eq. (12) becomes∑

n=a,b

Dnλn

(ω − ωng) (ω − ωfn)
= 0. (13)

The numerator is

f1 =Daλa (ω − ωbg) (ω − ωfb)

+Dbλb (ω − ωag) (ω − ωfa) . (14)

It is a quadratic function and can be rewritten as

f1 = Āω2 + B̄ω + C̄. (15)

with

Ā =
∑
n=a,b

Dnλn, (16a)

B̄ = −ωfg

∑
n=a,b

Dnλn, (16b)

C̄ = Daλaωbgωfb +Dbλbωagωfa. (16c)

The corresponding discriminant is

� = B̄2 − 4ĀC̄

= λaλb (Daλa +Dbλb) (Daλb +Dbλa) . (17)

If Da = Db, the equation can be simplified as

� = D2
aλaλb(λa + λb)

2. (18)

It is obvious the sign of discriminant depends only on the

product of λaλb in this case as shown in Fig. 3. It has to be

noted that Eq. (13) will becomes C̄ = 0 when λb = −λa,

which is not true. Therefore, the line λb = −λa corresponds

to no real roots.

Fig. 3. (Color online) The schematic diagram showing the regions of the
discriminant � with positive (“+”) or negative (“-”) signs. The red solid lines
corresponds to � = 0, which has only one real root. The line λb = −λa

corresponds to no real roots.

TABLE I

SIGN ANALYSIS OF THE DISCRIMINANT IN DIFFERENT REGIONS

Regions λa λb λb +
Db
Da

λa λb +
Da
Db

λa �
1 + + + + +
2 − − − − +
3 + − + + −
4 + − − + +
5 + − − − −
6 − + − − −
7 − + + − +
8 − + + + −

If Da �= Db, the equation can be changed as

� = DaDbλaλb

(
λb +

Da

Db
λa

)(
λb +

Db

Da
λa

)
. (19)

N (20)

The signs of the discrimination in different regions can be

obtained by making � = 0,⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λa = 0,

λb = 0,

λb = −Da

Db
λa,

λb = −Db

Da
λa.

(21)

So the signs of the discriminant can be analyzed as in Tab.

I, and the results are plotted in Fig. 4. Here it is assumed

that Da > Db without loss of generality. Similarly, Eq. (13)

will also lead to C̄ = 0 when λb = −Da

Db
λa, and thus the

line λb = −Da

Db
λa corresponds to no real roots.

IV. NUMERICAL SIMULATIONS

In this section, two examples are, respectively, employed

to illustrate the control schemes in Section II and Section
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Fig. 4. (Color online) The schematic diagram showing the regions of
discriminant � with positive (“+”) or negative (“-”) signs, where λa =
ωfa − ωag and λb = ωfb − ωbg . The red solid lines corresponds to

� = 0, which has only one real root. The line λb = −Da
Db

λa corresponds

to no real roots.

III. A laser pulse with a Gaussian envelope is employed to

drive the system from state |g〉 to state |f〉 in the examples

E (ω) = B exp

{
− (ω − ω0)

2

2δ2

}
eiφ(ω), (22)

where B = 6.0× 10−4, small enough to make sure that the

light-matter interaction is perturbative, ω0 = 0.05856 and

δ = 5.7518× 10−4.

In the control schemes, without loss of generality, we all

assume φ(ω) = 0 when ω ∈ (−∞, ωfg/2), and only half of

the spectral blocks are shown in Figs. 5, 6, 7 and 8.

A. Example 1

In Section II, it is proved that there are always two real

roots for a general non-degenerate five-level system involving

three TPA pathways, which leads to twelve blocks in the

control scheme. The following parameters (atomic units) are

used for a five-level system: ωag = 0.0595, ωbg = 0.0601,

ωcg = 0.0607, ωfg = 0.1180, Da = 1.1590, Db = 1.1615,

and Dc = 1.2508. The two real roots are ω1 = 0.0597500
and ω2 = 0.0604345.

In Lee’s scheme, the phases of the other blocks are shaped

as

φ (ω) =

{
+π

2 (ωfg/2, ωag)
⋃
(ω1, ωbg)

⋃
(ω2, ωcg)

−π
2 (ωag, ω1)

⋃
(ωbg, ω2)

⋃
(ωcg,∞)

,

(23)

which is shown in Fig. 5. The total TPA amplitude can be

enhanced 5.39 times compared with transform limited pulses

as listed in Tab. II.

B. Example 2

In the new block scheme for a four-level system involving

two TPA pathways, there are three cases for the discriminant,

Fig. 5. (Color online) Phase modulating strategy for a five-level system in
Lee’s block scheme.

Fig. 6. (Color online) Phase modulating strategy when � > 0 for a
four-level system in the new block scheme.

and numerical examples are given correspondingly in the

following. The results are listed in Tab. III. Compared with

TL pulses, the total TPA amplitude can be, respectively,

enhanced 7.76, 3.97 and 8.25 times for the three cases.

1) Case Δ > 0 : The following parameters are used in

this case: ωag = 0.0595, ωbg = 0.0601, ωfg = 0.1180, Da =
1.1590 and Db = 1.1615. Here ωbg > ωag > ωfg/2. The

roots of Eq. (12) are ω1 = 0.0597413 and ω2 = 0.0582586.

The phase-shaping strategy is

φ (ω) =

{
+π

2 (ωfg/2, ωag)
⋃

(ω1, ωbg)

−π
2 (ωag, ω1)

⋃
(ωbg + δ,∞)

, (24)

which is shown in Fig. 6.

2) Case Δ = 0: The following parameters are used in

this case: ωag = 0.0590, ωbg = 0.0601, ωfg = 0.1180,

Da = 1.1590, and Db = 1.1615. Here ωag = ωfg/2 < ωbg .

The phase-shaping strategy is

φ (ω) =

{
+π

2 (ωfg/2, ωbg)

−π
2 (ωbg,∞)

, (25)

which is shown in Fig. 7.
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TABLE II

TPA AMPLITUDES OF A FIVE-LEVEL SYSTEM WITH LEE’S BLOCK SCHEME. FOR SIMPLICITY, ALL THE VALUES ARE REDUCED BY A FACTOR OF B2 .

Control pulses Ur Unr U |U |
TL pulse −4.723 6.216i −4.723 + 6.216i 7.807

optimal pulse −4.723 −37.392 −42.115 42.116

TABLE III

TPA AMPLITUDES OF A FOUR-LEVEL STATE SYSTEM WITH THE NEW BLOCK SCHEME. FOR SIMPLICITY, ALL THE VALUES ARE REDUCED BY A

FACTOR OF B2 .

Cases Control pulses Ur Unr U |U |
Δ > 0

TL pulse −4.001 2.683i −4.001 + 2.683i 4.817
optimal pulse −4.001 −33.397 −37.399 37.399

Δ = 0
TL pulse −4.325 1.664i −4.325 + 1.664i 4.634

optimal pulse −4.325 −14.076 −18.402 −18.402
Δ < 0

TL pulse −3.221 0.0488i −3.221 + 0.0488i 3.222
optimal pulse −3.221 −23.355 −26.577 26.577

Fig. 7. (Color online) Phase modulating strategy when Δ = 0 for a
four-level system in the new block scheme.

3) Case Δ < 0: The following parameters are used in

this case: ωag = 0.05799, ωbg = 0.0601, ωfg = 0.1180,

Da = 1.1590, and Db = 1.1615. Here ωag < ωfg/2 < ωbg .

The phase-shaping strategy is

φ (ω) =

{
−π

2 (ωfg/2, ωfa) (ωbg,∞)

+π
2 (ωfa, ωbg)

, (26)

which is shown in Fig. 8.

V. CONCLUSIONS

In this work, we perform boundary analysis in two types of

multi-block schemes for some multi-level quantum systems.

Lee’s scheme only considers the dominant non-resonant

contributions in obtaining the block boundaries, while our

new block scheme takes all non-resonant contributions into

account to seek for the boundaries. For Lee’s block scheme,

it is proved that there are always two real roots for a general

five-level system having three TPA pathways, which leads to

a twelve-block control scheme. For the new block scheme,

the boundary equation is more complex, and a four-level

Fig. 8. (Color online) Phase modulating strategy when � < 0 for a
four-level system in the new block scheme.

system involving two TPA pathways is given as an example.

Different cases, in which the corresponding discriminants are

of different signs lead to different number of spectral blocks.

Numerical simulations show that, compared with TL pulses,

both the two types of multi-block schemes can enhance the

total TPA amplitude effectively.
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