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The nitrogen–vacancy (NV) center system has shown great potential in quantum computing due to 
its long decoherence time at room temperature by encoding the qubit in dressed states [28]. The 
corresponding control mechanisms, which is expressed by the pathways linking the initial and target 
states, can be naturally investigated with the Hamiltonian-encoding and observable-decoding (HE–OD) 
method in the interaction adiabatic representation. This is proved by the fact that the mechanisms change 
slightly with different detunings, magnetic and driving field intensities, and the dominant pathway is 
always |g〉 → |d〉 → |g〉, with |g〉 and |d〉 as the first two lowest dressed states. Cases are different 
in the diabatic representation. The orders of dominant pathways increase the driving field intensities. 
Tendencies of quantum pathway amplitudes with driving fields, magnetic fields and detunings change at 
different conditions, which can be analyzed from the Dyson series. HE–OD analysis show that the two 
states |g〉 and |d〉 in the interaction adiabatic representation are preferable to be employed as a qubit than 
the state pair |0〉 and |−1〉 in the diabatic representation under the current Hamiltonian and parameters.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

How to achieve an optimal and effective control of quantum 
systems has always been a hot topic due to its wide and potential 
application [1–12]. The corresponding control mechanism analysis 
is important to understand the underlying physics and can give 
hints to improve the control effect. The Hamiltonian-encoding and 
observable-decoding (HE–OD) technique has provided such a fea-
sible means, and expressed the mechanism in terms of different 
pathways linking the initial and target states [12–21]. In the exper-
iment, a signal function is firstly encoded in the Hamiltonian in a 
specific manner, and then the information of pathways is extracted 
by decoding the resultant nonlinear distortion of the output signal.

Quantum computation requires good control of quantum qubits. 
The nitrogen–vacancy (NV) center is an important candidate of 
solid-state quantum computing because of its special nature [22], 
such as long decoherence time at room temperature [23], good 
scalability and microwave manipulation [24]. In this context, we 
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will perform a mechanism analysis on the NV center system with 
HE–OD.

This paper is organized as follows. Section 2 introduces the HE–
OD method for mechanism analysis and the two representations 
for the NV center system. Section 3 gives the results. The final con-
clusions are presented in Section 4.

2. Methodology

2.1. The HE–OD method

It is known that the state of a quantum system can be de-
scribed by the Schrödinger equation

i
d |Ψ (t)〉

dt
= H |Ψ (t)〉 . (1)

The state Ψ (t) at time t can be obtained from the propagator U (t)
and the initial state |Ψ (0)〉 as |Ψ (t)〉 = U (t) |Ψ (0)〉. The time evo-
lution of U (t) satisfies

i
dU (t)

dt
= HU (t) . (2)

Its Dyson expansion is
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U (t) = I + (−i)

t∫
0

H (t1)dt1

+ (−i)2

t∫
0

H (t2)

t2∫
0

H (t1)dt1dt2 + · · ·. (3)

The transition amplitude from the initial state |a〉 to the target 
state |b〉 is given by 〈b| U (t) |a〉. So the n-th order pathway |a〉 →
|l1〉 → · · · → |ln−1〉 → |b〉 has the amplitude

U
n
(
l1,...,ln−1

)
ba (t) = (−i)n

t∫
0

〈b| H (tn) |ln−1〉

×
tn∫

0

〈ln−1| H (tn−1) |ln−2〉

× · · · ×
t2∫

0

〈l1| H (t1) |a〉dt1dt2 · · · dtn. (4)

The HE–OD method introduces a dimensionless time-like vari-
able s, and the Hamiltonian is encoded as H (t) → H (t, s), which 
leads to a distorted output signal 〈b| U (t, s) |a〉. Then the method 
tries to extract the desired pathway amplitudes from these signals. 
In practice, each element of the original Hamiltonian H is modu-
lated as

Hij (t) → Hij (t)mij (s) .

Here the modulation function mij (s) is taken to be the Fourier 
form

mij (s) = exp
(
2π iγi j s/N

)
, s = 1,2, · · ·, N.

The propagator under the new Hamiltonian H (t) → H (t, s) evolves 
as

i
dU (t, s)

dt
=

⎛
⎜⎝

H11 (t)m11 (s) · · · H1d (t)m1d (s)
...

...
...

Hd1 (t)md1 (s) · · · Hdd (t)mdd (s)

⎞
⎟⎠ U (t, s) .

(5)

The transition amplitude from the initial state to the target state 
becomes

〈b| U (t, s) |a〉 =
∝∑

n=1

d∑
l1,···,ln−1=1

U
n
(
l1,...,ln−1

)
ba (t)

× M
n
(
l1,...,ln−1

)
ba (s) (6)

with

M
n
(
l1,...,ln−1

)
ba (s) = mbln−1 (s)mln−1ln−2 (s) · · · ml1a (s)

= exp
(

2π iγn
(
ln−1,ln−2,···,l1

)s/N
)

, (7)

and

γn
(
ln−1,ln−2,···,l1

) = γbln−1 + γln−1ln−2 + · · · + γl1a. (8)

Due to the orthogonality of encoding functions M
n
(
l1,...,ln−1

)
ba (s), 

the pathway amplitudes U
n
(
l1,...,ln−1

)
ba (t) featured by the frequency 

of γn
(
ln−1,ln−2,···,l1

) can be obtained by performing an inverse fast 
Fourier transform (IFFT) of Uba (t, s).
Fig. 1. Energy-level diagram of the NV center in diabatic and IA representations. 
The electronic spin-triplet states are labeled with |Ms〉, and the dressed states are 
denoted with |g〉, |d〉 and |e〉.

2.2. Diabatic and interaction adiabatic representations

A nitrogen–vacancy (NV) center is actually a spin defect con-
sisting of a substitutional nitrogen impurity adjacent to a carbon 
vacancy in diamond. According to the electronic structure theory, 
its property is determined by six electrons, with two from the 
nitrogen atom, three from the carbon atoms surrounding the va-
cancy and one from the lattice [25–27]. The net spin is one due to 
the unpaired electron of the vacancy, leading to three energy lev-
els with the magnetic quantum number Ms equal to 0, 1 or −1. 
As shown in Fig. 1, the two levels with Ms = ±1 are degenerate 
due to the axial symmetry, while the state Ms = 0 is energetically 
lower.

In the diabatic representation, the electronic spin ground states 
of an NV center in an external field Bz along the symmetry axis 
can be described by the following Hamiltonian [28]:

H = D S2
z + γe Bz Sz, (9)

where D = 2.87 GHz is the so-called zero-field splitting [22], and 
the second Zeeman term γe = 2.802 MHz/G determines the eigen-
states |Ms〉.

In experiment, two off-resonant continuous microwave driving 
fields are usually applied to transitions |0〉 → |±1〉 at the same 
time. In the interaction picture, the Hamiltonian of the NV center 
driven by two microwaves with the same off-resonance � can be 
obtained by using rotating-wave approximation:

H N V = Ha + Hb (10)

with

Ha =
⎡
⎣ � + γeb 0 0

0 0 0
0 0 � − γeb

⎤
⎦ ,

Hb =
⎡
⎢⎣

0 1
2 �1(t) 0

1
2 �1(t) 0 1

2 �2(t)

0 1
2 �2(t) 0

⎤
⎥⎦ .

Here �1 and �2 are the Rabi frequencies of the two transitions. 
Then the Hamiltonian is transformed to eliminate its nonzero di-
agonal elements

H I = eiHat · Hb · e−iHat

= 1

2

⎡
⎣ 0 �1(t)ei(�+γeb)t 0

�1(t)e−i(�+γeb)t 0 �2(t)e−i(�−γeb)t

0 �2(t)ei(�−γeb)t 0

⎤
⎦.

(11)

The encoding in the diabatic representation is performed to this 
Hamiltonian.

In the following, we will introduce how to encode in the inter-
action adiabatic (IA) representation [14]. The time varying transfor-
mation that diagonalizes H N V (t) is R A(t), which links the dressed 
states and eigenstates |Ms〉. Then in the adiabatic representation, 
the evolution of the propagator becomes
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dU ′(t)
dt

=
[
−iR+

A (t) H I (t) R A (t) + dR+
A (t)

dt
R A (t)

]
U ′ (t) , (12)

which corresponds to the new Hamiltonian

H ′(t) = H1 (t) + H2 (t) = R+
A (t)H I R A(t) + i

dR+
A (t)

dt
R A (t) .

The first term shows the energy levels of the dressed states, while 
the second can be seen as the coupling between them. Then the 
Hamiltonian in the IA representation can be obtained by perform-
ing the following transformation:

H I A (t) = R+
I (t) H2 (t) R I (t) = iR+

I (t)
dR+

A (t)

dt
R A (t) R I (t) , (13)

with

R I (t) = exp

⎛
⎝−i

t∫
0

H1
(
t′)dt′

⎞
⎠ .

In Sec. 3, the control mechanisms are investigated in the di-
abatic and IA representations by encoding the Hamiltonians in 
Eqs. (11) and (13), respectively.

3. Mechanism analysis

3.1. Computation details

When the magnetic field b = 0, the eigenvalues of the Hamil-
tonian H N V are λ0 = � and λ±(t) = �

2 ± �e(t)
2 , where �e(t) =√

�2
1(t) + �2

2(t) + �2. The time varying transformation that diago-

nalizes H N V (t) is

R A(t) =
⎛
⎝ sin θ sinϕ cos θ sin θ cosϕ

− cosϕ 0 sinϕ
cos θ sinϕ − sin θ cos θ cosϕ

⎞
⎠ , (14)

where the angles are defined by tan θ(t) = �1(t)/�2(t) and 
tan 2ϕ(t) = �0(t)/� with �0(t) =

√
�2

1(t) + �2
2(t). The dressed 

states are

|g〉 = sin θ sinϕ |1〉 − cosϕ |0〉 + cos θ sinϕ |−1〉 ,

|d〉 = cos θ |1〉 − sin θ |−1〉 ,

|e〉 = sin θ cosϕ |1〉 + sinϕ |0〉 + cos θ cosϕ |−1〉 . (15)

In the IA representation, the Hamiltonian becomes

H I A (t) = i

⎛
⎜⎝

0 θ̇ sinϕe− f1(t) ϕ̇e f2(t)− f1(t)

−θ̇ sinϕe f1(t) 0 −θ̇ cosϕe f2(t)

−ϕ̇e f1(t)− f2(t) θ̇ cosϕe− f2(t) 0

⎞
⎟⎠

(16)

with

f1(t) =
⎛
⎝ i

h̄

t∫
0

λ+(t′)dt′
⎞
⎠ ,

f2(t) =
⎛
⎝ i

h̄

t∫
0

λ−(t′)dt′
⎞
⎠ .

When the magnetic field b �= 0, it’s difficult to get an analytical 
expression for the Hamiltonian in the IA representation. But we 
can obtain H I A (t) numerically according to the procedures listed 
in subsection 2.2.
Fig. 2. The dynamics in the diabatic (panel (a)) and adiabatic basis (panel (b)). The 
parameter (in arbitrary units) are Am = 2.5, � = 0, b = 0, and σ = 3 μs.

The Rabi frequencies are defined by � j (t) = Am exp{−[(t − t j)/

σ ]2} ( j = 1,2), with t2 = t1 +σ , t1 = 1
2 T and T = 20 μs. In the fol-

lowing simulations, units of Am , b and � are, respectively, atomic 
unit, G and MHz.

3.2. Numerical results

With parameter Am = 2.5, � = 0, b = 0, and σ = 3 μs, the pop-
ulation dynamics of the NV center are shown in Fig. 2 in two bases. 
In the diabatic basis (panel (a)), there is an overall transition from 
state |Ms = 0〉 to state |Ms = −1〉, but all states are involved in 
the dynamic evolution. In the adiabatic basis (panel (b)), almost all 
population remains in the initial state |g〉. Only a small amount 
of transition from |g〉 to |d〉 occurs in the dynamic process, while 
state |e〉 stays nearly unexcited. As seen in the left bottom pan-
els of Figs. 3 and 4, pathways contributing to the dynamics in the 
two representations also show the difference. In Ref. [28], Xu et 
al. chose the dressed states |g〉 and |d〉 as a qubit, and found that 
their energies are insensitive to b, then eventually achieved a much 
longer coherence time in the subspace spanned by |g〉 and |d〉.

With other parameters adopted in this work, the general fea-
ture does not change. The dynamics in the adiabatic basis is much 
simpler than that in the diabatic basis, which can also be seen 
in the following mechanism analysis. The control mechanisms of 
the NV center with different parameters (i.e. �, b and Am) are in-
vestigated by HE–OD in both diabatic and IA representations. The 
encoding matrix is the same for both representations:
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Fig. 3. Pathway amplitudes in the diabatic representation for detunings � = 0 and 
� = 2 MHz when magnetic field b is taken to be zero. Each bar indicates the con-
tribution of a particular pathway. The horizontal axis labels the IFFT frequencies of 
U−10, with notations D1, D2, D3, D4, D5, D6 labeling pathways |0〉 → |−1〉, |0〉 →
|1〉 → |0〉 → |−1〉, |0〉 → |−1〉 → |0〉 → |−1〉, |0〉 → |1〉 → |0〉 → |1〉 → |0〉 → |−1〉, 
|0〉 → |1〉 → |0〉 → |−1〉 → |0〉 → |−1〉 (|0〉 → |−1〉 → |0〉 → |1〉 → |0〉 → |−1〉), and 
|0〉 → |−1〉 → |0〉 → |−1〉 → |0〉 → |−1〉, respectively.

� =
⎛
⎝ 0 1 0

1 0 13
0 13 0

⎞
⎠ .

The extracted amplitudes of significant pathways are shown 
in Figs. 3 and 4, respectively, for � = 0 and � = 2 MHz. There 
are fewer pathways contributing to the population transfer in the 
IA representation indicating that this representation is more ap-
propriate for the mechanism analysis under our setting condition. 
The second-order pathway |g〉 → |d〉 → |g〉 always has the largest 
amplitude, which is consistent the dynamics shown in Fig. 2(b). 
In the diabatic representation, higher-order pathways will become 
dominant and the pathway amplitudes be larger with increased 
field intensity Am for both the two cases � = 0 and � = 2 MHz. 
However, things are different in the IA representation. The path-
way amplitudes become smaller for � = 0 while larger for � = 2
MHz with increased Am . The trends of pathway amplitudes with 
increased field intensities can also be obtained by analyzing the 
corresponding Dyson terms. The simplest pathway |0〉 → |−1〉 in 
the diabatic representation is taken as example here.

The amplitude of pathway |0〉 → |−1〉 for b = 0 can be written 
as

U 1−1,0 =
T∫

0

1

2
· Am · exp(−(

t − t2

σ
)2) · exp (−i�t)dt

= 1

2
Am · exp

(
−σ 2�2

4
− i�t2

)

×
T∫

0

exp

⎛
⎜⎝−

[
t −

(
t2 − iσ 2�

2

)]2

σ 2

⎞
⎟⎠dt. (17)

It is obvious that the amplitude is proportional to Am .
Fig. 4. Pathway amplitudes in the IA representation for detunings � = 0 and 
� = 2 MHz when magnetic field b is taken to be zero. Each bar indicates the con-
tribution of a particular pathway. The horizontal axis labels the IFF frequencies of 
U gg , with notations IA1, IA2, IA3 labeling pathways |g〉 → |d〉 → |g〉, |g〉 → |d〉 →
|g〉 → |d〉 → |g〉 and |g〉 → |d〉 → |e〉 → |d〉 → |g〉, respectively. Notations IA4, IA5, 
IA6 are the high-order pathways, which are not specified here due to their negligi-
ble amplitudes. The fact that there are fewer pathways contributing to the dynamics 
in the IA representation indicates that this representation is more appropriate for 
mechanism analysis with these parameters.

When the magnetic field b �= 0, the pathway amplitude U 1−1,0
changes differently when b increases under resonant and off-
resonant conditions, as shown in Fig. 5. The expressions for � = 0
and b �= 0 are

U 1−1,0 =
T∫

0

1

2
· Am · exp(−(

t − t2

σ
)2) · exp(i · γe · b · t) · dt. (18)

With the chosen parameters of driving fields, it becomes

U 1−1,0 =
20∫

0

1

2
· 1.0 · exp(−(

t − 13

3
)2) · exp(i · γe · b · t) · dt

= 3

2
· √π · exp(36.4bi − 17.64b2), (19)

then∣∣∣U 1−1,0

∣∣∣ = 3

2
· √π · exp(−17.64b2).

For � = 2 MHz and b �= 0, the pathway amplitude is

U 1−1,0 =
T∫

0

1

2
· Am · exp(−(

t − t2

σ
)2) · exp [i · (γe · b − �) · t] · dt

= 3

2
· √π · exp(13 (2.8 · b − 2) i − 9

4
(2.8 · b − 2)2), (20)

then∣∣∣U 1−1,0

∣∣∣ = 3 · √π · exp(−9
(2.8 · b − 2)2).
2 4
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Fig. 5. Significant pathways for different magnetic fields b and detunings � in the 
diabatic representation. Parameters of driving fields are t1 = 10 μs, t2 = 13 μs, Am =
1.0 and σ = 3 μs. The notations in the horizontal axis are the same as in Fig. 3.

It can be seen that the trends of 
∣∣∣U 1−1,0

∣∣∣ are opposite for cases 
of � = 0 and � = 2 MHz.

4. Conclusions and discussions

The control mechanism of the nitrogen–vacancy (NV) center 
system is investigated with the HE–OD method in both diabatic 
and IA representations. The experimental parameters are used in 
our simulations. Since in the experiment the two lowest dressed 
states are employed as a qubit, the IA representation is more suit-
able for mechanism analysis. This is proved that the fact that 
there is only one pathway |g〉 → |d〉 → |g〉 dominating the dy-
namics in the adiabatic basis while more pathways contribute in 
the dynamics in the diabatic basis. Different parameters (i.e. driv-
ing fields, magnetic fields, detunings) are adopted. It is found that 
the tendencies of pathway amplitudes when one of the parame-
ters changes are different under various conditions, which can be 
analyzed from the corresponding Dyson terms.

The underlying control mechanisms extracted from HE–OD 
analysis indeed give hints on how to improve the control effect. 
For example, in Figs. 3 and 4, with the same parameters Am = 2.5, 
b = 0, � = 0, the pathway amplitudes demonstrate different be-
havior in the two representations. In the diabatic representation, 
besides the initial state |0〉 and target state |−1〉, state |−1〉 is also 
involved in pathways D2, D4 and D5, whose amplitudes are large. 
However, in the IA representation, significant pathways IA1 and 
IA2, which involve states |g〉 and |d〉, have relative larger ampli-
tude, while the pathway IA3 involving an additional state |e〉 has 
a much smaller amplitude. These facts indicate that the two states 
Fig. 6. Significant pathways for different magnetic fields b and detunings � in the 
IA representation. Parameters of driving fields are t1 = 10 μs, t2 = 13 μs, Am = 1.0
and σ = 3 μs. The notations in the horizontal axis are the same as in Fig. 4.

|g〉 and |d〉 are preferable to be employed as a qubit than |0〉 and 
|−1〉 under the current Hamiltonian and parameters, which is con-
sistent with Ref. [28]. The population leakage from the two states 
of a qubit to another state will reduce the fidelity. Therefore, the 
further improvement of the fidelity can be realized by making the 
pathway amplitudes involving additional states approach zero.

The environmental effects in NV-center systems are mainly 
from the surrounding 13C nuclear spin bath fluctuations, which 
can be described by an effective weak random magnetic field b 
with time correlation [29]. Figs. 5 and 6 show different tendencies 
of quantum pathway amplitudes with magnetic fields in the two 
representations: the relative ratios of different pathways in the IA 
representation vary less than those in the diabatic representation. 
The results indicate that states |g〉 and |d〉 in the IA representa-
tion perform much better as two states of a qubit than the state 
pair |0〉 and |−1〉, which is also consistent with the conclusions in 
Ref. [28].
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