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Thermopower of few-electron quantum dots with Kondo correlations
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The thermopower of few-electron quantum dots is crucially influenced by on-dot electron-electron interactions,
particularly in the presence of Kondo correlations. In this paper, we present a comprehensive picture which
elucidates the underlying relations between the thermopower and the spectral density function of two-level
quantum dots. The effects of various electronic states, including the Kondo states originating from both spin and
orbital degrees of freedom, are clearly unraveled. Such a physical picture is affirmed by accurate numerical data
obtained with a hierarchical equations of motion approach. Our findings and understandings provide an effective
and viable way to control the thermoelectric properties of strongly correlated quantum dot systems.
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I. INTRODUCTION

Thermopower is one of the fundamental thermoelectric
properties. It measures the thermovoltage VT induced by a
temperature gradient �T . Materials with a large thermopower
are potentially useful for a variety of applications, such as
electronic refrigeration [1], thermoelectric conversion [2],
and on-chip cooling [3]. The thermopower of nanostructured
materials, such as quantum wires, quantum dots (QDs), and
molecular junctions, is found to be significantly larger than
the prediction of the Wiedemann-Franz law [4,5]. Experimen-
tal [5–18] and theoretical works [19–30] on this subject have
been extensive.

It has been found that the phonon contribution to the
thermopower of QDs is greatly suppressed [31]. Therefore,
thermopower can be deemed an intrinsic electronic property,
which is very sensitive to the details of electronic structure.
The thermopower of a few-electron QD is tunable by varying
the discrete energy levels with a gate voltage, as realized by
Scheibner et al. on a QD of 20 to 40 electrons [9]. They have
observed that the thermopower in the Kondo regime differs
distinctly from that in the Coulomb blockade regime [9].
However, the predominant effect leading to such a distinction
is rather unclear. Although it would “be interesting to look for
these effects in QDs in the very-few-electron limit” [10,32],
related theoretical studies have remained scarce.

Costi et al. have explored the spin-Kondo (S-Kondo) effects
on the thermopower of a single-level QD [22]. The physical
origin of S-Kondo phenomena is the screening of localized
electronic spin by the spins of conduction electrons in the
surrounding environment. Moreover, a real QD usually con-
sists of more than one level. The strong Coulomb interactions
between two degenerate or nearly degenerate levels will give
rise to the orbital-Kondo (O-Kondo) phenomena [33,34]. The
presence of O-Kondo may substantially enhance the Kondo
temperature of a multilevel QD [35]. Sakano et al. have
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studied the O-Kondo effects on the thermopower of multilevel
QDs [36,37].

Despite the reported progress, a clear and comprehensive
physical picture which unravels the complex effects of the
various electronic states in a few-electron multilevel QD is still
lacking. The main goal of this paper is to provide such a picture
and to devise viable means of controlling the thermopower of
strongly correlated QDs.

The major challenge for theoretical studies is accurate
characterization of Kondo correlations. A number of numerical
approaches have been employed to study strongly correlated
QDs. These include the numerical renormalization group
approach [38–41], the quantum Monte Carlo approach [42,43],
the exact diagonalization approach [44,45], the noncrossing
approximation [46,47], and the hierarchical equations of mo-
tion (HEOM) approach [48–54]. In this paper, we employ the
HEOM approach to investigate the thermoelectric properties
of single- and two-level QDs.

The remainder of this paper is organized as follows. In
Sec. II we introduce the multilevel Anderson impurity model
adopted in this work and briefly discuss the basic features of
the HEOM approach. In Sec. III we elucidate the underlying
relations between the thermopower and the characteristic
spectral features of QDs. Our understandings and predictions
are then verified with the accurate HEOM numerical results.
Finally, some concluding remarks are given in Sec. IV.

II. MODEL AND METHODOLOGY

A. Multilevel Anderson impurity model

We adopt the Anderson impurity model to represent
the few-electron QDs of interest in this work. The total
Hamiltonian is

Htotal = Hdot + Hlead + Hcoup. (1)

The dot is described by

Hdot =
∑

i

εi n̂i + U
∑

i

n̂i↑ n̂i↓ + U
∑
i>j

n̂i n̂j . (2)
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Here, n̂i = ∑
s n̂is ≡ ∑

s â
†
is âis is the occupation number

operator for the ith level, and â
†
is (âis) creates (annihilates) an

electron of spin s on the ith level of energy εi . The Coulomb
repulsion energy U assumes the same value for intralevel and
interlevel interactions. The interlevel spacing δε = εi+1 − εi

is usually an order of magnitude smaller than U [55]. The
noninteracting electrons in the two leads are described by the
Hamiltonian

Hlead =
∑
αks

εαk d̂
†
αks d̂αks, (3)

where d̂
†
αks (d̂αks) creates (annihilates) an electron on the kth

state of lead α. The interactions between the QD and the leads
are described by the Hamiltonian

Hcoup =
∑
αiks

tαik â
†
is d̂αks + H.c., (4)

where {tαik} are the coupling constants.
In the HEOM approach, the influence of leads on the quan-

tum impurities is characterized by hybridization functions,
which assume a Lorentzian form of

�α,ij (ω) ≡ π
∑

k

tαik t∗αjk δ(ω − εαk)

= δij

�α

(ω − μα)2/W 2 + 1
. (5)

Here, W is the band width, and μα is the chemical potential
of the αth lead. � = ∑

α �α is the overall dot-lead coupling
strength and is taken to be the energy unit hereafter.

B. The HEOM approach for strongly correlated quantum
impurity systems

The HEOM approach treats quantum impurity systems
from the perspective of open dissipative dynamics. The
HEOM theory can be established based on a formally exact
Feynman-Vernon path-integral formalism [56], as long as the
bath environment satisfies Gaussian statistics, which is true for
noninteracting electron reservoirs.

The recently developed HEOM approach provides a useful
tool for the accurate and efficient characterization of general
open quantum systems. It has been employed to investigate a
wide range of equilibrium and nonequilibrium and static and
dynamic properties of strongly correlated quantum impurity
systems [49,52,53,57,58]. The numerical results of the HEOM
approach are considered to be quantitatively accurate, as long
as the results converge with respect to the truncation of the
hierarchy.

The derivation of the HEOM formalism for a fermionic
environment has been detailed in Refs. [48,50,54,59]. Here,
we only introduce some of its basic features. The final form of
HEOM can be cast into a compact form as follows [48]:

ρ̇
(n)
j1···jn

= −
(

iL +
n∑

r=1

γjr

)
ρ

(n)
j1···jn

− i
∑

j

Aj̄ ρ
(n+1)
j1···jnj

− i

n∑
r=1

(−)n−r Cjr
ρ

(n−1)
j1···jr−1jr+1···jn

. (6)

Here, ρ(0)(t) = ρ(t) ≡ trenv ρtotal(t) is the reduced density
matrix, and {ρ(n)

j1···jn
(t); n = 1, . . . ,L} are the auxiliary density

matrices, with L being the truncation level.
In Eq. (6) the multicomponent index j ≡ (σαμνm) (σ =

+/−) characterizes the transfer of an electron from (to)
the impurity level μ to (from) level ν via the αth lead
and is associated with a memory time γ −1

m . The Grass-
mann superoperators Aj̄ ≡ Aσ̄

μ and Cj ≡ Cσ
μνm are defined

via their fermionic/bosonic actions on an operator Ô as
Aσ̄

μÔ ≡ [âσ̄
μ,Ô]∓ and Cσ

μνmÔ ≡ ησ
μνmâσ

ν Ô ± (ησ̄
μνm)∗Ôâσ

ν , re-
spectively, with σ̄ denoting the opposite sign of σ . The
on-dot electron interactions are contained in the Liouvillian
of impurities, L  ≡ [Hdot, ].

In principle, the hierarchy of Eq. (6) extends to infinite
levels (L → ∞) for quantum impurities involving electron-
electron interactions, and hence, the solution of Eq. (6) must
go through a systematic test to confirm its convergence versus
L. In practice, usually, the HEOM results converge uniformly
and rapidly with the increasing L, and hence, a relatively low
L (say, L = 4 or 5) is often sufficient to yield quantitatively
converged results.

It is a well-known limitation of the present HEOM approach
that a higher L is usually required to achieve numerical
convergence at a lower temperature [51]. Consequently, the
computational cost increases drastically as the temperature
decreases. For a symmetric single-level Anderson model,
the lowest temperature that can be accurately accessed by
the present HEOM approach is around 0.1TK (TK is the
Kondo temperature), using the computational resources at
our disposal [51]. Therefore, to preserve a high numerical
accuracy, in this work we focus on only the temperature range
in which the present HEOM approach is capable of yielding
fully converged results.

III. RESULTS AND DISCUSSIONS

A. Thermopower calculated via the HEOM approach

Thermopower is usually characterized by the Seebeck
coefficient defined by [60,61]

Sdef ≡ −
(

VT

�T

)
I=0

=
(

V

�T

)
I=0

. (7)

It is measured by searching for the bias voltage V that cancels
VT [61]. With the HEOM approach, Sdef can be computed
precisely by following the definition of Eq. (7): given a small
temperature gradient �T applied across the two leads, we
search for the voltage V , under which the voltage-driven
current cancels exactly the thermally induced current (hence
the net current is zero). The thermopower Sdef is thus obtained
through the last equality of Eq. (7).

Obviously, the search for the appropriate amplitude of
voltage V to fulfill the vanishing current condition could
be quite tedious. In contrast, it is computationally more
convenient to focus on the linear regime, where the total
electronic current is [62]

I = GV + LT �T, (8)

and hence, the thermopower can be evaluated as

Slinear = −LT /G. (9)
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FIG. 1. (Color online) Thermopower of a single-level QD calcu-
lated with two schemes: (i) Sdef = ( V

�T
)|I=0 is computed by searching

for the voltage V that cancels the thermal current induced by a fixed
�T = 10−2�. (ii) Slinear = −LT /G is obtained by computing the
transport coefficients LT and G. The HEOM truncation level is L = 4.
The parameters of the QD are (in units of �) U = 15, W = 30, and
T = 0.2.

The conductance G = ( ∂I
∂V

)�T =0 and the coefficient LT =
( ∂I
∂�T

)V =0 are evaluated by computing the electronic current
response to a small temperature gradient �T and to a small
bias voltage V , respectively.

Figure 1 compares the calculated Sdef and Slinear of a
single-level QD over a wide range of level energy ε1. Excellent
agreement is clearly observed, which affirms that the above
two schemes for computing the thermopower are numerically
equivalent in the linear regime.

It is also known that G and LT can be expressed by
Landauer-type formulas [63]. This leads to the following
expression of thermopower at equilibrium states (assuming
W is very large and setting � = kB = 1):

SLandauer = − 1

eT

∫
dω (ω − μ)f ′(ω) A(ω)∫

dω f ′(ω) A(ω)
. (10)

Here, A(ω) is the dot spectral function at equilibrium (see
Sec. III B for more details), f (ω) is the Fermi function, and
f ′(ω) ≡ ∂f (ω)

∂ω
. Equation (10) is often approximated further to

obtain the semiclassical Mott relation of

SMott = −π2

3

k2
BT

e

∂ ln G

∂ε
(11)

by assuming A(ω) is a slowly varying function of
ω [64].

Figure 2(a) depicts the calculated conductance G versus
the level energy ε1 of a single-level QD. The curves exhibit
three valleys, and each of them corresponds to an integer
electron occupation number N on the dot. In the valley of
N = 1, the increasing G as T decreases indicates the presence
of S-Kondo resonance [55,65]. The Kondo temperature of
the QD is TK = 8.4 × 10−3� when the energy level aligns
with the center of the N = 1 valley (ε1 = εeh = −U/2, where
εeh is the electron-hole symmetry point) [66]. Limited by
computational resources, it is difficult to access the T 

TK regime with the present HEOM approach. Nevertheless,

FIG. 2. (Color online) (a) G and (b) S vs ε1 for a single-level QD
of U = 15� and W = 30�. (c) G and (b) S vs ε1 for a two-level QD
with the parameters of (in units of �) δε = ε2 − ε1 = 1, U = 20, and
W = 80. The equilibrium chemical potentials of leads μ are set as
zero energy.

although the Kondo resonance is strongly suppressed by the
thermal fluctuation at T > TK, the surviving Kondo correlation
still has significant influence on the QD electronic proper-
ties [53]. This is clearly affirmed by the increasing G with
decreasing T , as displayed in Fig. 2(a). Figure 2(b) compares
the calculated Slinear, SLandauer, and SMott of the single-level
QD. All the curves are antisymmetric with respect to the
energy εeh. Apparently, SLandauer agrees remarkably with Slinear,
while SMott exhibits severe deviation in the S-Kondo (N = 1)
regime [4,9].

Figure 2(c) displays the calculated G versus ε1 of a
two-level QD. The electron-hole symmetry point is now at
the center of the N = 2 valley, i.e., εeh = −(3U + δε)/2.
While the N = 1, 2, and 3 valleys all manifest apparent Kondo
signatures (G increases with decreasing T ), they are attributed
to different types of Kondo correlations. The N = 2 valley is
dominated by the O-Kondo states [36], while the other two
are associated with both S-Kondo and O-Kondo states [34].
The corresponding S versus ε1 are shown in Fig. 2(d). As in
the case of the single-level QD, SLandauer precisely reproduces
Slinear, while SMott is some way off.

We emphasize that Slinear and SLandauer are obtained via very
different numerical procedures: while the computation of Slinear

is based on the evaluation of transport properties G and LT ,
SLandauer is completely determined by the dot spectral function
A(ω). As shown in Fig. 2(d) [and also Fig. 3(c)], Slinear and
SLandauer agree remarkably with each other at a sufficiently high
truncation level L = 4. Meanwhile, we also show that such an
excellent agreement is not reached at a lower L. As demon-
strated in Figs. 3(a) and 3(b), the HEOM-calculated Slinear and
SLandauer deviate more from each other as L decreases. This
clearly indicates that only when the HEOM results converge
with respect to L can they be considered to be quantitatively
accurate.
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FIG. 3. (Color online) Slinear and SLandauer of a two-level QD
calculated by the HEOM approach at the truncation level of (a) L = 2,
(b) L = 3, and (c) L = 4. The parameters adopted are (in units of �)
δε = 1, U = 20, W = 80, and T = 0.5.

B. Dot spectral function and Kondo spectral features

The equilibrium spectral function Ai(ω) of the ith dot level
is associated with the retarded Green’s function as follows:

Ai(ω) ≡ 1

2π

∫
dt eiωt 〈{âi(t),â

†
i (0)}〉

= − 1

π
Im

[
Gr

ii(ω)
]
. (12)

The computation of Ai(ω) and Gr (ω) in the framework
of the HEOM method has been discussed extensively in
Refs. [51,54].

Figure 4 depicts the HEOM-calculated A(ω) = A1(ω) of a
single-level QD. Results obtained at different truncation levels
L are displayed. The S-Kondo state leads to a sharp spectral
peak at ω = μ, and the dot level gives rise to the single-electron
resonance peaks (Hubbard peaks) roughly at ω = ε∗

d and
ω = ε∗

d + U , with ε∗
d being the averaged renormalized level

energy. Apparently, the two Hubbard peaks converge rapidly
as L increases, while the Kondo peak at ω = μ = 0 converges
more slowly. Note that the difference between the L = 4
and L = 5 curves is so small that the two curves cannot be
distinguished by the naked eye. This affirms that the truncation
at L = 4 is sufficient to yield quantitatively accurate spectral
function. Moreover, A(ω) is correctly normalized at any L, as

FIG. 4. (Color online) Spectral function of a single-level QD
calculated with the HEOM approach at different truncation levels.
The inset magnifies the Kondo spectral peak around ω = 0. The
parameters of the QD are (in units of �) ε1 = −5, U = 15, W = 30,
and T = 0.2.

FIG. 5. (Color online) (a) A1(ω) and (b) A2(ω) of a two-level QD
calculated at different truncation levels L. The parameters adopted are
(in units of �) ε1 = −5.5, δε = 1, U = 20, W = 80, and T = 0.5.

∫ +∞
−∞ A(ω) dω = 1 is satisfied to numerical precision. Figure 4

clearly affirms that the HEOM approach can accurately capture
the Kondo spectral peaks at a relatively low L.

We then examine a two-level QD with a small level spacing
δε = ε2 − ε1 = �. The QD is in the N = 1 regime with ε1 =
−5.5�. Figures 5(a) and 5(b) display the calculated Ai(ω) for
i = 1 and 2, respectively. The total dot spectral function is
A(ω) = 1

2 [A1(ω) + A2(ω)]. Here, the factor 1
2 preserves the

normalization condition of
∫ +∞
−∞ A(ω) dω = 1. From Fig. 5,

it is evident that A(ω) of a two-level QD also converges
quantitatively at L = 4 at the temperature T = 0.5�.

As shown in Fig. 5(a), an S-Kondo resonance peak is present
at ω = μ = 0 at T = 0.5�. The S-Kondo peak is contributed
completely by level 1. This is because ε2 > ε1, so that level
1 is close to half filling, while level 2 is almost vacant. Aside
from the S-Kondo peak, the interlevel Coulomb interaction is
expected to give a pair of satellite peaks at ω = μ ± δε [33,67].
In Fig. 5(b) we observe an O-Kondo peak at ω = μ + δε

contributed by level 2; however, the other O-Kondo peak
expected to appear at ω = μ − δε is absent.

The presence (and absence) of S-Kondo and O-Kondo
peaks can be understood as follows. For the QD studied in
Fig. 5, an electron may hop from a certain lead onto the
empty level 2, accompanied by another electron hopping from
level 1 to the counter lead [33,34]. The net effect is that an
electron transfers across the dot and a second electron gets
excited locally from level 1 to level 2. Through such a virtual
two-electron process, level 2 gains an energy of ε2 − ε1 = δε.
Therefore, the virtual process leads to a resonance peak (the
O-Kondo peak) at ω = μ + δε in A2(ω). Meanwhile, level 1 is
near half filling, and thus, an electron may hop from level 1 to a
certain lead, accompanied by another electron entering into the
dot from the counter lead. Because ε1 < ε2, it is energetically
more favorable for the incoming electron to occupy level 1.
Note that the spin of the incoming electron is opposite that
of the leaving electron due to Pauli exclusion [34]. Such a
two-electron cotunneling process results in an effective spin
flip on level 1 and thus gives rise to the S-Kondo peak at ω = μ

in A1(ω). This also explains why the expected O-Kondo peak
at ω = μ − δε does not show up: the corresponding virtual
process is energetically unfavorable in a competition with the
S-Kondo resonance.

Figure 6 displays the distribution of Kondo spectral peaks
for the same two-level QD studied in Fig. 5. The three
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FIG. 6. (Color online) Calculated Ai(ω) (i = 1,2) of a two-level
QD in the (a) N = 1, (b) N = 2, and (c) N = 3 regimes. The
parameters adopted are (in units of �) δε = 1, U = 20, and T = 0.5.

panels explore the N = 1, 2, and 3 regimes (corresponding
to different values of ε1), respectively. The N = 1 regime has
been discussed in detail in the previous paragraph.

In the N = 2 regime, level 1 is almost fully occupied,
while the occupation number in level 2 remains rather small.
Therefore, the virtual two-electron process associated with
level 2 is essentially identical to that in the case of N = 1.
Indeed, A2(ω) depicted in Fig. 6(b) exhibits an O-Kondo
peak at ω = μ + δε, the same as in Fig. 6(a). However, the
virtual process associated with level 1 is distinctly different
from the case of N = 1. With an electron hopping from level
1 to a certain lead, the incoming electron from the counter
lead cannot populate onto level 1 because level 1 has already
been occupied by an opposite-spin electron. Therefore, the
incoming electron has to occupy the vacant level 2. Through
such a virtual process, level 1 effectively loses an energy of
δε, and consequently, A1(ω) exhibits an O-Kondo peak at
ω = μ − δε.

In the N = 3 regime, level 1 is almost fully occupied, while
level 2 is close to half filling. The virtual two-electron process
associated with levels 1 and 2 can be analyzed like those
as above. These electron cotunneling events give rise to the
O-Kondo peak at ω = μ − δε in A1(ω) and the S-Kondo peak
at ω = μ in A2(ω), as shown in Fig. 6(c).

The virtual two-electron process can also be interpreted
as cotunneling of holes. For instance, the N = 3 regime
corresponds to the situation of single-hole occupation on level-
2. Because of the electron-hole symmetry, the distribution of
Kondo spectral peaks in the N = 3 regime forms a mirror
image of that in the N = 1 regime [see Figs. 6(a) and 6(c)].

C. Relation between dot spectral function and thermopower

The remarkable agreement between SLandauer and Slinear

in Fig. 2 verifies that Eq. (10) is highly accurate. It is
inferred from Eq. (10) that S is completely determined by the
equilibrium-state dot spectral function A(ω). Since different
types of electronic states have distinctive spectral features,
their influence on the thermopower can be unraveled through
Eq. (10).

The sign of S is of particular importance because it predicts
the direction of thermal electric current driven by a given
temperature gradient across the two leads. By definition,
A(ω) � 0 at all ω, and f ′(ω) is negative around μ and almost
zero elsewhere. Therefore, f ′(ω) defines a thermal activation
window. The width of the window � is determined solely by
the temperature T via the analytic form of f ′(ω). The spectral

FIG. 7. (Color online) The line shapes of −f ′(ω) at various T .
The boundaries of the thermal activation window are indicated by
dotted vertical lines.

density A(ω) outside this window has almost no contribution
to S.

As depicted in Fig. 7, −f ′(ω) � 0 over the entire range of
ω, and it exhibits a single peak at ω = μ = 0. The full width
at half maximum (FWHM) of the peak is 2 ln(3 + 2

√
2) T �

3.5 T , and thus, a higher T should be associated with a larger
thermal activation window. We choose � = 10 T . Such an � is
sufficiently large for accurate evaluation of S through Eq. (10).
The boundaries of the thermal activation window defined by
the width � are displayed in Fig. 7.

The Landauer-type formula of Eq. (10) can be recast as
follows:

S � − 1

eT

∫ μ+�/2
μ−�/2 dω (ω − μ)f ′(ω)A(ω)∫

dωf ′(ω) A(ω)

= − �

eT

(ωI − μ) f ′(ωI ) A(ωI )∫
dωf ′(ω) A(ω)

. (13)

Here, the first equality holds because f ′(ω) is essentially zero
outside the thermal activation window (μ − �

2 ,μ + �
2 ). The

second equality uses the mean value theorem, with ωI being
a certain energy within the thermal activation window. The
relative weight of A(ω) around μ is thus quantified by the value
of ωI ; if A(ω) is, overall, larger in the range of ω ∈ (μ,μ + �

2 )
than in (μ − �

2 ,μ), we have ωI > μ and S < 0 and vice versa.
The physical origin of S-Kondo and O-Kondo spectral

peaks has been discussed in Sec. III B. In the following, we
analyze the spectral features of various types of electronic
states in a two-level QD and unravel their contributions to the
thermopower using Eq. (13).

We choose TL to be a low temperature at which both the
S-Kondo and O-Kondo correlations are present and TH to be
a high temperature at which all the Kondo correlations are
completely destroyed.

In the absence of external fields, the S-Kondo state leads to
a sharp spectral peak at ω = μ; see Fig. 8(a) for a schematic
diagram of A(ω) at TL. The O-Kondo states emerge only when
the dot levels are degenerate or nearly degenerate. They give
rise to a pair of satellite peaks at ω = μ ± δε [33,67]. Since the
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U

ΩH

ΩL
0 ΩL/2

I II

III IV

TL TH

(a) S < 0window

Hubbard

O-Kondo

S-Kondo

O-Kondo

Hubbard

∗
d − µ ∗

d + U

(b) S > 0window

Hubbard

Hubbard

∗
d µ ∗

d + U

(I)

(c) S > 0window

Hubbard

O-Kondo

S-Kondo

O-Kondo

Hubbard

∗
d µ ∗

d + U

(d) S > 0window

Hubbard

Hubbard

∗
d µ ∗

d + U

(II)

(e) S < 0window

Hubbard

O-Kondo

O-Kondo

S-Kondo Hubbard

∗
d − µ ∗

d + U

(f) S < 0window

Hubbard

Hubbard

∗
d µ ∗

d + U

(III)

(g) S > 0window

Hubbard

O-Kondo

O-Kondo

S-Kondo Hubbard

∗
d µ ∗

d + U

(h) S < 0window

Hubbard

Hubbard

∗
d µ ∗

d + U

(IV)

FIG. 8. (Color online) Schematic diagram of the dot spectral
function of a two-level QD in the N = 1 region. The spectral peaks
originating from the various electronic states are depicted. The left
and right columns correspond to temperatures TL and TH, respectively.
Each row represents a scenario corresponding to a certain range of
parameters (δε,U ), as illustrated in the inset in (b). The thermal
activation window and the resultant sign of S are also shown in each
panel.

Kondo peaks locate at or near μ, they have crucial influence
on the value of S at TL. Note that TL need not be lower than
TK; although the Kondo peak heights are greatly suppressed
by thermal fluctuation, the peak positions and line shapes can
be largely preserved even at TL > TK [53]. Aside from the
Kondo peaks, the dot levels also give rise to the single-electron
resonance peaks (Hubbard peaks) roughly at ω = ε∗

d and
ω = ε∗

d + U , with ε∗
d being the averaged renormalized level

energy. In contrast, all the Kondo peaks vanish completely at
TH, while the Hubbard peaks are little affected by the variation
of temperature [see Fig. 8(b)]. Therefore, it is the Hubbard
peaks that dominate the S at TH.

Using the above analysis, we now elucidate how A(ω)
determines the sign of S for a two-level QD. We focus on
the N = 1 regime (μ − U

2 < ε1 < μ), in which both S-Kondo
and O-Kondo correlations take effect at TL. In particular,
we consider the range of 0 < δε < �L

2 and �L < U < �H,

where �L (�H) is the width of the thermal activation window
at temperature TL (TH). Such a (δε,U ) subspace is further
divided into four zones [see the inset of Fig. 8(b)]. Each zone
corresponds to a distinctive scenario and is illustrated by a
specific row in Fig. 8.

Zone (I) is associated with a small δε and a large U .
As shown in Fig. 8(a), at TL the S-Kondo and O-Kondo
peaks locate within the thermal activation window, while
the Hubbard peaks stay outside (their tails may extend into
the window). The S-Kondo peak is nearly symmetric around
μ, and it thus has rather minor effects on the sign of S.
Because the QD is in the N = 1 regime, the O-Kondo peak
at ω = μ + δε is much higher than that at ω = μ − δε, as
demonstrated in Fig. 5. This is because the virtual two-electron
process associated with the latter is energetically unfavorable
compared with the S-Kondo resonance; see the related remarks
in Sec. III B. Therefore, A(ω) is, overall, larger in the ω > μ

half of the window. It is thus inferred from Eq. (13) that
ωI > μ and S < 0. The situation of TH is illustrated by
Fig. 8(b). At TH all the Kondo peaks vanish completely. Since
ε∗
d ∼ ε1 > μ − U

2 , the energy ε∗
d is closer to μ than ε∗

d + U .
Consequently, the Hubbard peak at ω = ε∗

d lies partly within
the window, while the Hubbard peak at ω = ε∗

d + U remains
largely outside the window. Therefore, A(ω) is, overall, larger
in the ω < μ half of the window, which implies that ωI < μ

and S > 0. Altogether, our analysis predicts that the QDs in
zone (I) will undergo a sign change of S from negative to
positive as the temperature increases from TL to TH.

Zone (IV) corresponds to a large δε and a small U . As
depicted in Fig. 8(g), at TL the O-Kondo peaks locate close to
the edge of the window. Therefore, the sign of S is trivially
related to the Kondo peaks and is largely determined by the
distribution of Hubbard peaks. With a small U , some portion
of the Hubbard peak at ω = ε∗

d extends into the window, while
the peak at ω = ε∗

d + U stays mainly outside of it; we thus
have ωI < μ and S > 0. The situation of TH is illustrated
in Fig. 8(h), where both Hubbard peaks have substantial
distribution within the window. Because the peak at ε∗

d + U

is much higher than that at ε∗
d , A(ω) is, overall, larger in the

ω > μ half of the window, which implies that ωI > μ and
S < 0. Altogether, it is predicted that the QDs in zone (IV)
will experience a sign change of S from positive to negative
as the temperature increases from TL to TH.

For the other two zones covering the rest of the (δε,U )
subspace of interest, the relation between A(ω) and S can
be analyzed similarly. For QDs in zone (II) [zone (III)], S is
predicted to retain a positive (negative) sign throughout the
temperature range TL < T < TH.

We point out that for a QD in any of the four zones, the
Hubbard peak at ω = ε∗

d + U is always much higher than
that at ω = ε∗

d . In particular, the ratio of the area under the
former peak to that under the latter is roughly 3 : 1. This is
because we focused on the N = 1 regime, and hence, the
average occupation number on a dot level (per spin) is around
1
4 . Consequently, we should have

∫ μ

−∞ A(ω) dω ≈ 1
4 and∫ ∞

μ
A(ω) dω ≈ 3

4 . This is verified by the HEOM-calculated
A(ω) shown in Figs. 9–12.

Figure 8 thus provides a comprehensive picture which
clearly unravels the effects of the various electronic states on
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FIG. 9. (Color online) Calculated A(ω) of a two-level QD in the
N = 1 regime (ε1 = −5.5�) with (δε,U ) = (�,20�) at (a) TL =
0.5� and (b) TH = 2.5�. The various spectral peaks are marked by
arrows, and the thermal activation window is indicated by dashed
lines. The inset in (a) magnifies A(ω) around μ = 0 at TL, while the
inset in (b) depicts the calculated S vs ε1.

the thermopower. In Sec. III D we verify such a picture using
the calculated A(ω) and S obtained with the HEOM approach.

D. Validation of Fig. 8 using the HEOM approach

Figures 9(a) and 9(b) depict the calculated A(ω) of a
two-level QD at TL = 0.5� and TH = 2.5�, respectively. The
dot parameters are δε = � and U = 20�. Since δε is much
smaller than �L

2 while U is close to �H, the QD is presumably
in zone (I). As can be seen from Fig. 9, the distribution
of the various spectral peaks in the calculated A(ω) agrees
remarkably with the schematic diagram depicted in Figs. 8(a)
and 8(b). In particular, the O-Kondo peak at ω = μ + δε and
the Hubbard peak at ω = ε∗

d contribute dominantly to the
sign of S at TL and TH, respectively. This thus affirms our
designation that the QD is in zone (I). Our above analysis
has predicted a sign change of S from negative to positive as
T increases from TL to TH. Such a sign change is, indeed,
observed in the HEOM-calculated data [see the inset of
Fig. 9(b)].

Figures 10(a) and 10(b) depict A(ω) of another QD with
(δε,U ) = (2�,20�) at TL = 0.5� and TH = 2.5�, respec-
tively. Such a QD belongs to zone (II). Clearly, the O-Kondo
peak locates near the edge of the thermal activation window
because of the large δε = 2� [see Fig. 10(a)]. The sign
of S is thus determined mainly by the distribution of the

FIG. 10. (Color online) Calculated A(ω) of a two-level QD in
the N = 1 regime (ε1 = −6�) with (δε,U ) = (2�,20�) at (a) TL =
0.5� and (b) TH = 2.5�. The inset in (a) magnifies A(ω) around
μ = 0 at TL, while the inset in (b) depicts the calculated S vs ε1.

FIG. 11. (Color online) Calculated A(ω) of a two-level QD in the
N = 1 regime (ε1 = −6�) with (δε,U ) = (�,15�) at (a) TL = 0.5�

and (b) TH = 2.5�. The inset in (a) magnifies A(ω) around μ = 0 at
TL, while the inset in (b) depicts the calculated S vs ε1.

Hubbard peaks. In the temperature range of TL < T < TH,
the Hubbard peak at ω = ε∗

d + U always resides outside the
window (because of the large U ), while the Hubbard peak
at ω = ε∗

d has a significant distribution within the window.
Therefore, A(ω) is, overall, larger in the ω < μ half of the
window, leading to a positive S [see the inset in Fig. 10(b)].

Figures 11(a) and 11(b) depict the calculated A(ω) of the
QD with (δε,U ) = (�,15�) at TL = 0.5� and TH = 2.5�,
respectively. At temperature TL, the O-Kondo peak at ω =
μ + δε lies within the thermal activation window, while the
Hubbard peaks mainly stay outside of it, as depicted in
Fig. 11(a). Therefore, A(ω) is, overall, larger in the ω > μ

half of the window, leading to a negative S at TL. At TH both
Hubbard peaks are within the window. Note that the Hubbard
peak at ω = ε∗

d + U is significantly higher than that at ω = ε∗
d ,

as depicted in Fig. 11(b). Therefore, A(ω) is also larger in
the ω > μ half of the window, and the negative sign of S is
preserved. This thus affirms our designation that the QD is in
zone (III).

We then examine a QD with a larger δε = 2� and a
smaller U = 15�. The calculated A(ω) at the same TL and
TH are displayed in Figs. 12(a) and 12(b), respectively. The
distributions of the various spectral peaks conform well with
the schematic diagrams in Figs. 8(g) and 8(h), indicating that
such a QD should belong to zone (IV). Indeed, the calculated
S exhibits a sign change from positive to negative as T

varies from TL to TH. This thus verifies our prediction on
the thermoelectric behavior of the QDs in zone (IV).

FIG. 12. (Color online) Calculated A(ω) of a two-level QD in
the N = 1 regime (ε1 = −6�) with (δε,U ) = (2�,15�) at (a) TL =
0.5� and (b) TH = 2.5�. The inset in (a) magnifies A(ω) around
μ = 0 at TL, while the inset in (b) depicts the calculated S vs ε1.
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IV. CONCLUDING REMARKS

To conclude, we have elucidated the underlying relations
between the thermopower and the characteristic spectral
features of two-level QDs. In particular, we have explored
how the various types of electronic states (including the
spin-Kondo states, orbital-Kondo states, and single-electron
resonant states) influence the thermopower. With these in-
sights, we have exemplified an effective and viable way to
control the sign of thermopower of Kondo-correlated QDs.
This is realized by tuning the temperature and by selecting the
appropriate level spacing δε and Coulomb repulsion strength
U . Our understandings and findings provide useful insights
into controlling the direction of electric (heat) current through
a QD by applying a temperature (voltage) gradient across the
two coupling leads. This may have important implications for
novel thermoelectric applications of QDs.

This work has focused on the linear response regime in
which the temperature gradient or bias voltage applied across
the dot is rather small. It will be even more interesting
and challenging to investigate the thermoelectric properties
of Kondo-correlated QDs under a large bias voltage or
temperature gradient. The HEOM method provides a unified
approach for characterizing equilibrium and nonequilibrium
properties of quantum impurity systems, and hence, it is
potentially useful for studies of far-from-equilibrium QDs.
Work along this direction is underway.
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APPENDIX: VALIDITY OF THE HEOM APPROACH FOR
TREATING STRONGLY CORRELATED QUANTUM DOTS

The numerical accuracy of the HEOM approach has been
examined carefully and comprehensively in many of our previ-
ous works, such as in Refs. [51–54]. In particular, the correct
Kondo scaling behavior and the analytic logarithmic Kondo
tail have been recovered with the HEOM calculations [51].

A wide range of electronic properties of strongly correlated
quantum impurity models has been calculated with the HEOM
approach, and the resulting data agree remarkably with those
obtained with the high-level numerical renormalization group
(NRG) methods. These include the spectral function (Fig. 2
and supplemental Fig. S9 in Ref. [51]), the steady-state current
under bias voltages (Fig. S4 in the Supplemental Material of
Ref. [53]), and the local magnetic susceptibility (Fig. 4 in
Ref. [52]).

In this appendix, we provide more evidence of the numerical
validity and accuracy of the HEOM approach.

FIG. 13. (Color online) Calculated As(μ) as a function of T/TK.
The QD parameters are (in units of �) U = −2ε1 = 1.6 and W = 20.

1. Friedel sum rule

The Friedel sum rule implies that the following relation
should hold exactly for a QD at zero temperature [68,69]:

As(μ) = sin2(πns)

π�
, (A1)

where As(μ) is the spectral density of spin-s electrons at the
chemical potential μ and ns is the occupation number of spin-s
electrons on the dot.

We now examine the relation of Eq. (A1) on a symmet-
ric Anderson QD. The HEOM-calculated As(μ) ≡ A↑(μ) =
A↓(μ) versus the scaled temperature T/TK is shown in Fig. 13,
with the Kondo temperature TK evaluated as follows [66]:

TK =
√

U�

2
e−πU/8�+π�/2U . (A2)

At the electron-hole symmetry point ε1 = −U/2, the QD is
exactly half filled (ns = 1

2 ). It is clearly demonstrated in Fig. 13
that, as T decreases, As(μ) correctly approaches 1

π�
. This thus

verifies that the prediction of Eq. (A1) is accurately achieved
with the HEOM approach.

2. Conductance of single-level Kondo QDs at T → 0

In Ref. [51], it is shown that the HEOM approach
reproduces the correct Kondo scaling behavior through the
calculated zero-bias conductance dI/dV versus T/TK. Be-
low, we verify that the HEOM approach yields the correct
conductance in the limit of T → 0.

At low temperatures, the relation between the zero-bias
conductance G and the temperature T can be described by the
empirical Goldhaber-Gordon form [70,71]:

G(T ) = G0

[
1 + (2

1
s − 1)

(
T

TK

)2]−s

, (A3)

where TK is the Kondo temperature, G0 = 2e2/h is the con-
ductance quantum, and s is a scaling constant. Equation (A3)
can be rearranged as(

G

G0

)− 1
s

= 1 + (2
1
s − 1)

(
T

TK

)2

. (A4)
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FIG. 14. (Color online) (G/G0)−1/s vs (T/TK)2. The parameters
adopted are ε1 = −U/2 and W = 20�. The scaling constant is s =
0.217.

We then calculate G versus T for a series of single-level QDs
with the HEOM approach. The resulting data are analyzed as
follows: (i) Assign a certain value to s. (ii) Plot (G/G0)−1/s

versus (T/TK)2 and fit the data to a straight line. Here, TK is
evaluated via Eq. (A2). (iii) Extract the value of s by relating
the slope of the fitted line to (21/s − 1). (iv) Repeat step (i)
until the value of s converges.

Figure 14 plots (G/G0)−1/s versus (T/TK)2 with the
converged s = 0.217. Such a value of s agrees well with
previous theoretical and experimental studies [70–72]. In
Fig. 14, the calculated data for the various QDs with different
values of U fall on the same straight line. This clearly
affirms that the Kondo scaling behavior is, indeed, “universal.”
Moreover, although it is very difficult to calculate G(T = 0)
with the present HEOM approach (the computational cost
increases drastically as T decreases) [48], the value of G(T =
0) can be estimated by extrapolating the fitted straight line to
T = 0 and measuring the intercept. In doing so, we obtain
G(T = 0) ≈ 0.973 G0, which is reasonably close to the exact
value of G0. The small deviation may be due to the minor
uncertainty in the fitting and extrapolation procedures.

3. Conductance of two-level Kondo QDs

At the same temperature, the HEOM computation for a
two-level QD is much more expensive than that for a single-
level QD. The reason is mainly twofold: (i) the Fock space of
a two-level QD is four times larger than that of a single-level
QD, and hence, a much larger memory is needed; (ii) usually, a

FIG. 15. (Color online) Comparison between HEOM (scattered
symbols) and NRG (lines) calculated zero-bias conductance of a
two-level QD. The NRG data are extracted from Fig. 1(a) of Ref. [73],
which uses a constant hybridization function; the HEOM approach
adopts a Lorentzian form of a hybridization function with a finite
bandwidth W = 100�. The dimensionless gate voltage Ng ≡ 1

2 −
ε1/U . The QD parameters are δε = 0 and U = 20�.

higher truncation level L is required to accurately characterize
the interlevel electron interactions. Therefore, with the limited
computational resources at our disposal, it is very difficult to
obtain the conductance of two-level QDs at very low T and to
examine the Kondo scaling behavior. Instead, we will compare
the HEOM-calculated conductance with the NRG data in the
literature at finite temperatures.

Anders et al. calculated the zero-bias conductance of QDs
made from semiconducting carbon nanotubes with the NRG
method [73]. A two-level Anderson model is adopted with
δε = 0. We calculate the conductance of the same QD with
the HEOM approach, and the results are presented in Fig. 15.
The calculation results exhibit both S-Kondo and O-Kondo
features, as G increases with decreasing T in the N = 1,2,3
valleys.

As shown in Fig. 15, the HEOM and NRG results agree
well with each other in the whole range of gate voltage ε1.
The remaining minor deviations (mainly in the conductance
peak beside the N = 2 valley) may be due to the different
forms of hybridization functions adopted in the HEOM and
NRG calculations; see the caption of Fig. 15 for details. We
therefore have verified that the HEOM approach is capable
of giving quantitatively accurate electronic properties for the
two-level QDs.
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