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Abstract: We demonstrate the use of the ultrafast spatial coherent-control method to resolve the
fine-structure two-photon transitions of atomic rubidium. Counter-propagating ultrafast optical
pulses with spectral phase and amplitude programmed with our optimized solutions successfully
induced the two-photon transitions through 5S1/2-5P1/2-5D and 5S1/2-5P3/2-5D pathways, both
simultaneously and at distinct spatial locations. Three different pulse-shaping solutions are
introduced that combine amplitude shaping, which avoids direct intermediate resonances, and
phase programming, which enables the remaining spectral components to be coherently interfered
through the targeted transition pathways. Experiments were performed with a room-temperature
vapor cell, and the results agree well with theoretical analysis.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
OCIS codes: (320.5540) Pulse shaping; (190.7110) Ultrafast nonlinear optics; (020.2649) Strong field laser physics.
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1. Introduction

Light structured in the spectro-temporal domain is used in coherent control to enhance or suppress
nonlinear material responses through engineered passages of optical transitions [1–3]. It has been
demonstrated that laser pulses with programmed phase and amplitude can boost, for example, the
two-photon transitions of atoms in two, three, and four energy-level structures [4–7]. Various
functional light-matter interactions have also been designed with shaped lights; examples include
dark pulses [8], laser-catalytic chemical reactions [9], quantum gates [10], and high-harmonic
generations [11], to list a few. In particular, state-to-state controllability in coherent control
allows for the selective excitation of otherwise unresolvable energy states of a complex quantum
system [12], suggesting the use of coherent control methods in precision and/or functional
spectroscopy.

The use of shaped-pulses in laser spectroscopy became more interesting following the recent
demonstration of Doppler-free coherent-control spectroscopy [13]. Termed as ultrafast spatial
coherent-control (USCC), this method uses a pair of counter-propagating laser pulses, of which
the spectrum is phase modulated in such a way that counter-propagating photons that satisfy each
two-photon excitation meet at a specific location along the beam propagation path. With this
method, laser pulses were successfully programmed to provide a spatially-mapped spectroscopic
assessment of each two-photon transition of rubidium and cesium all at once [13]. In particular,
in conjunction with the optical frequency comb [14, 15], USCC may be useful for precision
spectroscopy of atomic species for which the laser cooling method is unavailable [16]. Note
that retro-reflected CW lasers in conventional saturation-absorption spectroscopy [17], widely
used for Doppler-free spectroscopy for room temperature atomic gases with CW lasers, also
accomplish the same Doppler-free condition with fewer potential systematics. In comparison,
pulsed laser schemes may reach DUV/XUV/IR wavelength regions more easily but increase
residual first-order Doppler shifts.
Our previous work [18] extended the initial method in Ref. [13] to a two-photon transition

system having an intermediate resonance using a designed spectral-phase modulation. In this
paper, considering the fact that multiple transition pathwaysmay exist in quantum systems [19–21],
we extend this approach [18] even further to a system of multiple transition pathways, where
the crowding resonances require specific spectral-phase modulations. We propose three such
modulations (the first one is an extension of Ref. [18] and the others are newly introduced),
particularly designed to resolve the fine-structure energy levels of alkali atoms and experimentally
demonstrate their performance. The experimental concept is shown in Fig. 1, where the two
fine-structure two-photon transition pathways, 5S1/2-5P1/2-5D and 5S1/2-5P3/2-5D, of atomic
rubidium are separated in the excitation space.

In the rest of the paper, we first theoretically describe an imaging method using the USCC to
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Fig. 1. Ultrafast spatial coherent-control scheme: Laser pulses are phase-modulated to
spatially resolve the Doppler-free excitation of 5S1/2-5P1/2-5D and 5S1/2-5P3/2-5D of
atomic rubidium.

revolve distinct nonlinear transition pathways in Sec. II, and briefly summarize our experimental
procedure in Sec. III. The experimental results are presented in Sec. IV, with a comparison of the
performance of the three proposed modulations. The conclusion follows in Sec. V.

2. Theoretical consideration

As the simplest model, we consider a four-level system in the diamond-type configuration. There
are two two-photon transition pathways, |g〉 → |a〉 → | f 〉 and |g〉 → |b〉 → | f 〉, where |g〉 is
the ground state, |a〉 and |b〉 are the intermediate states, and | f 〉 is the final state. The energies
are 0, ωa, ωb, and ω f (in unit ~), respectively. From the second-order perturbation theory, the
two-photon transition probability amplitude cf g to the final state | f 〉 is given by

cf g =
∑
i=a,b

(
cr
f g,i + cnr

f g,i

)
. (1)

Here, the resonant and non-resonant transition contributions are respectively defined as

cr
f g,i = −π

µ f iµig

~2
E(ωig)E(ω f i), (2)

cnr
f g,i = i

µ f iµig

~2

∫ ∞

−∞

E (ω) E
(
ω f g − ω

)
ωig − ω

dω, (3)

where µi j is the transition dipole moments and ωi j = ωi − ωj is the resonant transition
frequencies [6]. The cr

f g,i term is the resonant transition contribution that only depends on the
resonance frequency components of laser spectrum E(ω). Due to the narrow spectral response in
cr
f g,i , it is not possible to isolate the resonant excitation part in time (likewise in space). However,

the cnr
f g,i term, the non-resonant transition contribution, depends on all possible spectral pairs that

satisfy the energy conservation ωi + ωj = ω f g. Note that only cnr
f g,i is involved in USCC [18].

We first consider a single laser-pulse to be programmed in the frequency domain as

Es(t) =
∫

Es(ω)eiωtdω =
∫

A (ω) eiΦ(ω)eiωtdω, (4)
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where A(ω) and Φ(ω) are the programmed spectral amplitude and phase of the electric-field,
respectively. In order to eliminate the resonant contribution cr

f g,i , we program spectral holes near
the resonant frequencies ωag and ωbg, by

A(ω) = A0(ω)
(
1 − e−(ω−ωag )2/δ2

a − e−(ω−ωbg )2/δ2
b

)
. (5)

Here, A0(ω) is the spectral amplitude before programming and δi=a,b is the width of each spectral
hole, which is significantly smaller than the pulse bandwidth. With this spectral amplitude
programming, the resonant transition background signal is removed (i.e., cr

f g,i = 0), so only the
non-resonant transition part will be considered, as

cf g = cnr
f g,a + cnr

f g,b . (6)

When two pulses of the same electric-field spectrum Es(ω) counter-propagate along ±z, the
combined electric field reads

E(ω) = A(ω)eiΦ(ω)
(
e−iωz/c + eiωz/c

)
, (7)

and Eq. (6) can be replaced by

cf g (z) =
∑
i=a,b

∫ ∞

−∞
i fi(ω)A (ω) A (ω̂) ei[Φ(ω)+Φ(ω̂)]

×
[
1 + e2iω f gz/c + e2iω̂z/c + e2iωz/c

]
dω, (8)

where for convenience we define fi(ω) = µ f iµig/[~2(ωig − ω)] and ω̂ = ω f g − ω. where for
convenience we define fi(ω) = µ f iµig/[~2(ωig − ω)], ω̂ = ω f g − ω and the global phase factor
exp(iω f gz/c) is omitted. Then, the spatial excitation probability is given by

|cf g(z)|2 =
����� ∑
i=a,b

∫ ∞

−∞
fi(ω)A (ω) A (ω̂) ei[Φ(ω)+Φ(ω̂)]

[
cos ((ω̂ − ω)z/c) + 1 + e2iω f gz/c

]
dω

�����2 ,
(9)

where the cosine term in the square bracket corresponds to the counter-propagating pulse
contribution, and the remaining two terms correspond to the single-sided pulse contribution.
The spectral phase programming in Φ (ω) + Φ (ω̂) needs two strategies: a sign-flipping of

the function fi(ω) at the intermediate resonances, and a maximizing of the ratio between the
counter-propagating pulse and single-sided pulse contributions. After describing the experimental
procedure in Sec. III, we introduce three such phase-programming solutions in Sec. IV, along
with the corresponding experiments.

3. Experimental description

Experiments were performed for the fine-structure transitions of atomic rubidium (85Rb), where
the four lowest energy levels are |g〉 = 5S1/2, |a〉 = 5P1/2, |b〉 = 5P3/2, and | f 〉 = 5D. A schematic
of the experimental setup is shown in Fig. 1, which is similar to the one from our earlier work [18].
We used a Ti:sapphire mode-locked laser oscillator, producing sub-picosecond laser pulses at
a repetition rate of 82 MHz. The laser pulses were frequency-centered at ω0/2π = 384.3 THz
(ω0 = ω f g/2 and equal to 778 nm in wavelength) to be two-photon resonant to the 5S1/2-5D
transition. The laser bandwidth was ∆ω/2π = 22.3 THz (with a full width at half maximum of
45 nm in wavelength), which was sufficient to cover all four transitions.
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The laser pulse was programmed with a transmissive spatial light modulator (SLM) with an
array of liquid-crystal pixels (128 pixels, 100 µm pitch) placed in the Fourier domain with a
4 f geometry pulse shaper [22]. The focal length of the 4 f geometry was f = 150 mm, and the
spectral resolution of each pixel was 0.46 nm in wavelength. The groove density of the gratings
was 1200 mm−1. The spectral position of each SLM pixel was calibrated by scanning a π-step
phase [6]. For the spectral amplitude modulation, two copper wires were placed on the Fourier
plane: the first one was 140 µm in width to block the intermediate resonance ωag, and the second
one was 700 µm in width to block ωbg and also reduce the signal strength difference between the
transition paths. The as-programmed pulses were then focused in the rubidium vapor cell and the
fluorescence at 420 nm from the 5D state through the 6P state was imaged with a charge-coupled
device (CCD) camera. The vapor cell was heated to around 50∼60 ◦C to enhance the fluorescence
signal.

4. Results

4.1. Double V-shape phase modulation

The first solution is a double V-phase modulation, a direct extension from Ref. [18], which reads:

Φ(ω)R1 = α1(ω − ω0) + πΘ(ω − ωag)
Φ(ω)R2 = α2(ω − ω0) + πΘ(ω − ωbg)
Φ(ω)B2 = −α2(ω − ω0) + π
Φ(ω)B1 = −α1(ω − ω0) + π

(10)

where Θ(x) denotes the Heaviside step-function and α1,2 are the spectral phase-slopes. The
subscripts of Φ(ω) stand for the following spectral blocks: R1 = (0, ωcg), R2 = (ωcg, ω0),
B1 = (ω0, ω f c), and B2 = (ω f c,∞). In Fig. 2(a), the modulated spectral amplitude (dashed
blue line) and phase (solid red line) are plotted, using Eqs. (5) and (10), respectively, along
with the inverse function fa(ω) + fb(ω) (dotted green line). In the given four-level system, with
ωbg > ωag, there are seven frequency boundaries to be considered:ωag,ωcg,ωbg,ω0(= ω f g/2),
ω f b, ω f c , and ω f a, in ascending order. Here, ωag, ωbg, ω f b, and ω f a are the resonances, and
ωcg and ω f c are the characteristic frequencies where fa(ω) + fb(ω) changes its sign [23, 24],
given by

ωcg =
kωag + ωbg

k + 1
, k =

µ f bµbg

µ f aµag
, (11)

and ω f c = ω f g − ωcg. The four spectral blocks are defined to each enclose the following
characteristic resonances: fag ∈ R1, fbg ∈ R2, ff b ∈ B2, and ff a ∈ B1. Then, due to the singular
nature of fi(ω), the spectral region of R1 + B1 dominantly contributes to the 5S1/2-5P1/2-5D
(D1 transition) pathway and likewise, R2 + B2 to 5S1/2-5P3/2-5D (D2).

In the time domain, this phase modulation in Eq. (10) splits the initial unshaped pulse into four
sub-pulses, each having a distinct spectral region. As shown in the spectrogram in Fig. 2(b), these
spectral blocks are time-shifted, with respect to the initial pulse, by ∆t = −α1 (B1), −α2 (B2), α2
(R2), and α1 (R1), when α1 > α2 > 0. Then, the single-sided pulse contribution in Eq. (9) is
completely washed out, and the counter-propagating pulse contribution in Eq. (9) is given with
the integrand e2iα(ω−ω0) cos[(ω̂ − ω) z/c] that constructively interferes when α = z/c. Since the
shaped pulse, having four sub-pulses, meets its counter-propagating copy at the center of the
vapor cell (z = 0), four different two-photon transitions occur at positions z1 = ±α1c (R1 + B1)
and z2 = ±α2c (R2 + B2).
The numerical calculation and the experimental result for the double V-phase modulation

are plotted in Figs. 2(c) and 2(d), where α2 was increased from 0.4 to 1.6 ps with a step size
of 0.1 ps, while α1 = 0.4 ps was kept constant. For α1 = α2 = 0.4 ps, there are two sub-pulses
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Fig. 2. (a) The plot of double-V shape spectral phase modulation (solid red line), modulated
spectral amplitude (dotted blue line), and fi(ω) from Eq. (9) (dotted green line). (b)
Spectrogram of a pulse having the double-V shape spectral phase fromEq. (10). (c) Composite
map of numerical calculation results of Eq. (9) with the spectral phase modulation Eq. (10),
where α1 = 0.4 ps is fixed and α2 increases from 0.4 ps to 1.6 ps. (d) Composite map
from experiment. (e) Experimental result for α1 = α2 = 0.4 ps (upper) and for α1 = 0.4 ps,
α2 = 1.5 ps (lower). The positions of z1 (solid black lines) and z2 (dashed black lines) are
illustrated.

split in the time domain, so two excitation peaks exist with overlapped D1 and D2 transitions, as
shown in the upper part of Fig. 2(e). As α2 increases, the sub-pulses having the spectral blocks
corresponding to D2 move further from z = 0, so the excitation peaks are better resolved as in
the lower part of Fig. 2(e).

4.2. Three phase-slopes

The second phase-programming solution utilizes three phase-slopes, which are given by:

Φ(ω)R1 = α1(ω − ω0) + πΘ(ω − ωag)
Φ(ω)R2 = α2(ω − ω0) + πΘ(ω − ωbg)
Φ(ω)B12 = −α3(ω − ω0) + π

(12)

where B12 combines the spectral blocks B1 and B2. This phase modulation, plotted as the solid
red line in Fig. 3(a), results in three sub-pulses in the time-domain, as shown in the spectrogram
in Fig. 3(b). The first and third pulses (e.g., from the forward and backward propagating pulses,
respectively) cause the two-photon transition through D1, and the second and the third through D2.
As a result, the integrand of the counter-propagating pulse contribution term in Eq. (9) becomes
e2i(α1,2+α3)(ω−ω0) cos ((ω̂ − ω) z/c), and it constructively interferes when α1,2 + α3 = ±2z/c. The
excitation positions are determined as z1 = ±(α1 + α3)c/2 and z2 = ±(α2 + α3)c/2, respectively.
The numerical calculation and experimental result are plotted in Figs. 3(c) and 3(d), respectively,
where α1 and α2 were fixed with α1 = 0.1 ps and α2 = 1.5 ps, while α3 was increased from 0.1
to 1.6 ps with a step size of 0.1 ps. In this case, the spacing between the excitation peaks for
the respective D1 and D2 transitions is fixed because α1 and α2 are constants, while the peak
positions are gradually separated as α3 increases.
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map of numerical calculation results of Eq. (9) with the spectral phase modulation Eq. (12),
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4.3. Periodic square phase

The last phase modulation solution utilizes the mathematical relation ei
π
2 [sgn(x)−1] cos(x) =

| cos(x)| to include the counter-propagating pulse contribution in Eq. (9) (the first term in the
square bracket), with all spectral pairs in-phase. The as-obtained solution reads:

ΦR1(ω) = A1sgn [cos(β1(ω − ω0))] + πΘ(ω − ωag)
ΦR2(ω) = A2sgn [cos(β2(ω − ω0))] + πΘ(ω − ωbg)
ΦB2(ω) = A2sgn [cos(β2(ω − ω0))] + π
ΦB1(ω) = A1sgn [cos(β1(ω − ω0))] + π

(13)

where A1,2 are the modulation amplitudes, sgn(x) is the signum function defined as sgn(x) = −1
for x ≤ 0 and +1 for x > 0, and β1,2 are the modulation frequencies, or the period, of the
square function for each spectral region. When the modulation amplitudes and frequencies satisfy
A1 = A2 = π/4 and β1,2 = 2z/c, as illustrated in Fig. 4(a), the integrand in Eq. (9) becomes
ei

π
2 sgn[cos(2(ω−ω0)z/c)] cos[(ω̂ − ω)z/c] = eiπ/2 | cos((ω̂ − ω)z/c)|, which induces a complete

constructive interference from the counter-propagating pulse contributions. As a result, excitation
occurs at z1 = ±β1c/2 and z2 = ±β2c/2 (the spatially resolved two-photon excitation pattern). On
the other hand, when A1 = A2 = π/2, the integral of the counter-propagating pulse contribution
term is eliminated because eiπsgn[cos(β1,2(ω−ω0))] ≡ −1, and only the single-sided excitation term
(the spatially independent signal) remains in Eq. (9). Therefore, there is no specific spatial
excitation pattern. The numerical calculation of Eq. (9) with the solution of Eq. (13) is shown in
Fig. 4(b), where the modulation depth is changed from A1 = A2 = 0 to A1 = A2 = π with 0.025π
steps for δ = 0, α1 = 1.16 ps, and α2 = 2.32 ps.
The experimental result for the periodic square phase solution is shown in Fig. 4(c), where

A1,2 were scanned together from A1 = A2 = 0 to π with a step of 0.05π. The optimal modulation
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Fig. 4. (a) Plot of periodic square spectral phase modulation. (b) Numerical calculation result
of Eq. (9) with the spectral phase modulation Eq. (13), changing the modulation depth from
A1 = A2 = 0 to π. (c) Composite map from experiment. (d) Numerical calculation including
finite SLM pixel size and intensity distribution by beam focusing. (e) Reconstructed result
by eliminating the atomic motion effect.

amplitude with which the single-side contribution is minimized was found to be A1 = A2 = 0.35π,
slightly shifted from the theoretically predicted A1 = A2 = π/4. This discrepancy mainly comes
from the finite size of the phase modulation pixels of our SLM, as the modulation functions of
two transition pathways (Φ1 and Φ2 in Eq. (13)) could not both be centered on the two-photon
center ω0 simultaneously. Another discrepancy originates from the spatial background intensity
distribution by beam focusing. This is more apparent for the modulation depths where the
single-side contribution is dominant. The combined numerical calculation with these constructive
interference leakage effects in the experimental system is illustrated in Fig. 4(d), which better
matches the result in Fig. 4(c). In spite of these systematic errors, the overall behavior where the
single-sided contribution is recovered at A1 = A2 = π/2 and the minimized point exists between
A1 = A2 = 0 and π/2 remains.
The effects of atomic motion in vapor and the imaging blurring due to Abbe diffraction are

taken into account to reconstruct Fig. 4(e). To investigate the extent of each excitation peak
broadening, the convolution integral of the numerical calculation results of excitation patterns
with these effects were performed. For the atomic motion effects, the position distribution along
the pulse propagation axis after a 5D state lifetime of 240 ns from the velocity distribution
of Rubidium (for the pulse propagation axis) at a temperature 55◦C was considered. For the
diffraction effect from the imaging aperture, an impulse response function with a lens aperture
size of 25.4 mm was taken into account. The width of the broadened excitation peak after the
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convolution integral with atomic motion effects was approximately 120 µm, which is comparable
to the average width of each excitation pattern in the experimental result in Fig. 4(c) with Gaussian
fitting (R-square above 0.965). The width of the broadened excitation peak by diffraction was
on the order of a few µm, which is smaller than the pixel width of our CCD camera, and
therefore negligible. Then, comparing the width of the Gaussian fittings of excitation patterns
(R-square above 0.99) before and after convolution, we found that this broadened excitation pattern
could be effectively reconstructed by multiplying a Gaussian with a FWHM of approximately
30 µm to each broadened excitation peak. By Gaussian fitting and multiplying the Gaussian
function found above, the broadening effect of the experimental results in Fig. 4(c) is effectively
reconstructed. This result is shown in Fig. 4(e). Each excitation peak narrowed, agreeing well
with the measurement in Fig. 4(d).

5. Conclusion

In summary, we performed ultrafast spatial coherent-control experiments to resolve the fine-
structure two-photon transitions (5S1/2-5P1/2-5D and 5S1/2-5P3/2-5D pathways) of atomic
rubidium with various phase programming solutions. This work not only extended our earlier
work [18] of combining spectral amplitude and phase programmings to deal with atomic transitions
with multiple intermediate resonances, but also newly proposed and demonstrated two additional
phase programming solutions. Compared to the previously introduced double-V spectral phase,
the three phase slopes and the periodic square phases provided for simpler programming and
the possibility for finer spectral resolution spectroscopy, respectively. In experiment, counter-
propagating ultrafast optical pulses as-shaped with the spectral phase and amplitude programming
solutions successfully induced the given two-photon transitions, simultaneously and at distinct
spatial locations, agreeing well with the theoretical analysis.
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