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Abstract Optimal strategies to maximize the two-photon transition amplitude have
been well studied. However, for a system with multiple intermediate states linking the
same initial and final states, the question that how to achieve an optimal population
transfer remains nontrivial. In this work, we propose a systematic block scheme to
maximize the transition amplitude by explicitly considering the interferences among
different transition pathways. The scheme can probably provide a quasi-optimal
solution, even considering the uncertainties and noises in experiments. Cases with
infinitesimal and finite spectral resolution are both investigated. A special example
with all first transition frequencies being larger than half of the two-photon transition
frequencies is employed to demonstrate our scheme. The analysis provides valuable
insights on how to manipulate the interferences in control of quantum systems.

Keywords Quantum control · Pulse shaping · Two-photon transitions · Boundaries
analysis · Optimal control

1 Introduction

Two-photon transition is one important physical process in quantumworld, and numer-
ous coherent control schemes have been proposed to optimize the transition amplitude
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[1–14]. The 5s → 5p → 5d transition of the rubidium atom can be effectively
enhanced by frequency-swept ultrafast laser pulses with both “intuitive” and “counter-
intuitive” schemes [1]. Then Silberberg’s group investigated the two-photon transition
in the frequency domain [2,5] and proposed that a π/2 step scheme can enhance
the amplitude via the constructive interference between resonant and non-resonant
terms [5]. Various works have been carried out based on this typical work. Lee et
al. studied how to achieve the constructive interference between two pathways in a
diamond-configuration system with an eight block scheme [10]. We have also com-
pared different coherent control schemes to manipulate the two two-photon transition
pathways in atomic rubidium [13], and found that the eight block scheme is a practical
scheme for experimental implementation. This block scheme can be further improved
by accurately considering the non-resonant terms belonging to each block [15]. To
generalize this idea to a system with multiple intermediate states linking the same ini-
tial and final states, one has to carefully determine the boundaries of the spectral blocks
to achieve maximal constructive interferences among different two-photon transition
pathways. A systematic strategy is proposed in this work from this point of view.

The paper is organized as follows. Section 2 gives the theoretical model to describe
the transition from the initial state to the target state via N intermediate states. Sec-
tion 3 shows the optimal control schemes to maximize the transition amplitude with
infinitesimal and finite spectral resolution. A specific example is demonstrated in Sect.
4 for illustration. Conclusions are given in Sect. 5.

2 Theoretical model

Multiple two-photon transitions can be involved in a typical system shown in Fig.
1. The initial and final states are, respectively, labeled as |g〉 and | f 〉, and thus the
intermediate states labeled as |n〉 (n = 1, 2, . . . , N ), indicate N two-photon transi-
tions. According to the second order time-dependent perturbation theory, the sum of
the amplitudes of these transitions induced by a weak laser pulse ε(t) is:

U (t) = −
∑

n

μngμ f n

h̄2

∫ t

−∞
dt1

∫ t1

−∞
dt2ε (t1) ε (t2) exp

(
iω f nt1

)
exp

(
iωngt2

)
,

(1)

whereμ f n andμng are the transition dipoles, andωi j = (Ei −E j )/h̄ are the transition
frequencies.

For simplicity, we define some abbreviations: ωn = ωng , ω̂ = ω f g − ω, and
υn = μngμ f n/h̄2. In some cases, dipole moments are real numbers. For example,
when a linearly polarized laser is employed in the excitation of atoms, only �m = 0
transitions will occur [10,16]. Here m is the magnetic quantum number, and dipole
moments are real for this kind of transitions [16]. In the following, we assume all
dipole moments are real or have the same phase along different pathways. The final
amplitude after the pulse is over (i.e. t → ∞) can be written as the combination of
resonant and non-resonant terms in frequency domain [5]:
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Fig. 1 (Color online) A typical
system involving N two-photon
transitions. The resonant
frequencies are labeled as ωn for
transitions from |g〉 to |n〉, and
ω̂n for those from |n〉 to | f 〉

U =
∑

n

U (n) =
∑

n

[
U (n)
r +U (n)

nr

]
, (2)

with

U (n)
r = −πυn E (ωn) E

(
ω̂n

)
, (3)

U (n)
nr = iυn℘

∫ ∞

−∞
E (ω) E

(
ω̂
)

ωn − ω
dω, (4)

where E(ω) is the Fourier transform of ε(t) and ℘ is the Cauchy principal value. The
subscripts r and nr denote the resonant and non-resonant parts, respectively.

An Gaussian envelope pulse E(ω) is modulated to optimize the transition proba-
bility from the state |g〉 to | f 〉 with

E (ω) = b (ω)G (ω) eiφ(ω), (5)

where G(ω) is the original Gaussian envelope function, and φ(ω) (limited within
[−π, π ]) and b(ω) (within [0, 1]) are the phase and amplitude modulations, respec-
tively.

With the definitions g(ω) = G(ω)G(ω̂) and h(ω) = b(ω)b(ω̂)eiφ(ω)eiφ(ω̂), the
resonant and non-resonant parts of the two-photon transition labeled with n can be
rewritten as

U (n)
r = −πυnh (ωn) g (ωn) , (6)

U (n)
nr = iυn℘

∫ ∞

−∞
h (ω) g (ω)

ωn − ω
dω. (7)

The fact that g(ω) and h(ω) are axis-symmetric about ω = ω f g/2 leads to g(ω̂) =
g(ω) and h(ω̂) = h(ω). To make our analysis straight forward, it is necessary to
rewrite the integration into the region (ω f g/2, ∞),

℘

∫ ∞

−∞
g (ω) h (ω)

ωn − ω
dω =℘

(∫ ω f g/2

−∞
g (ω) h (ω)

ωn − ω
dω +

∫ ∞

ω f g/2

g (ω) h (ω)

ωn − ω
dω

)

=℘

(∫ ω f g/2

−∞
g
(
ω̂
)
h
(
ω̂
)

ωn − ω̂
dω̂ +

∫ ∞

ω f g/2

g (ω) h (ω)

ωn − ω
dω

)
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=℘

(∫ ∞

ω f g/2

g (ω) h (ω)

ω − ω̂n
dω +

∫ ∞

ω f g/2

g (ω) h (ω)

ωn − ω
dω

)

=℘

∫ ∞

ω f g/2
g (ω) h (ω)

(
1

ωn − ω
− 1

ω̂n − ω

)
dω. (8)

Here the variable transformation ω → ω̂ is used.
Then the total non-resonant amplitude Unr = ∑

n U
(n)
nr is

Unr = i℘
∫ ∞

ω f g/2
g (ω) h (ω) f (ω) dω. (9)

Here f (ω) is defined as

f (ω) =
∑

n

υn

(
1

ωn − ω
− 1

ω̂n − ω

)
, (10)

g(ω) is the amplitude without modulation, and h(ω) characterizes the modulation
effect. To achieve an optimal transition probability, signs of h(ω) f (ω) should be the
same across the whole frequency domain. So h(ω)must be carefully chosen according
to the sign of f (ω), which is dominantly determined by the integration near the
resonant frequencies ωn and ω̂n .

3 Control scheme

3.1 Notations and definitions

The real poles and real zeros of the rational fractional function f (ω) play an decisive
role for our control scheme, because f (ω) may change signs at these points by which
the frequency domain is divided into multiple intervals. The poles of f (ω) are ωn and
ω̂n (n = 1, 2, . . . , N ), and its real zeros are labeled as xi (i = 1, 2, . . . , M). Since
f (ω) is axis-symmetric about ω = ω f g/2, we have f (x̂i ) = 0 if f (xi ) = 0.
The sets of poles and real zeros are defined as

P = {
ω : ω = ωn or ω = ω̂n; n = 1, 2, . . . , N

}
,

P> = {
ω : ω ∈ P;ω ≥ ω f g/2

}
. (11)

and

Z = {xi ; i = 1, 2, . . . , M} ,

Z> = {
xi : xi ∈ Z; xi ≥ ω f g/2

}
. (12)

A new set T is introduced by adding the symmetry frequency ω f g/2 and infinity
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T = P>

⋃
Z>

⋃{
ω f g/2,∞

}
. (13)

Its elements can be arranged in an ascending order to form a set To.

To = {
α1, α2, . . . αi , . . . , αMo : αi < αi+1;αi , αi+1 ∈ T

}
. (14)

Here Mo denotes the number of elements in To. It is obvious that the first element
α1 = ω f g/2 and the last element αMo = ∞.

The spectral interval between αi and αi+1 is defined as Ai .

Ai = (αi , αi+1) , (15)

where αi , αi+1 ∈ To and i = 1, 2, . . . , Mo − 1.
The sign function Sgn(x) is

Sgn (x) =

⎧
⎪⎨

⎪⎩

+1 x > 0,

0 x = 0,

−1 x < 0.

(16)

Theorem 3.1 In each interval Ai , Sgn[ f (ω)] is always the same (1 or −1). In other
words, Sgn[ f (ω1) f (ω2)] = 1, if ω1 and ω2 are in the same interval Ai .

Proof Assume Sgn[ f (ω1) f (ω2)] = −1 (i.e. f (ω1) f (ω2) < 0), when ω1 and ω2 be
in the same intervalAi . Then f (ω) must have at least one zero point between ω1 and
ω2 since f (ω) is continuous in the intervalAi . It contradicts with the fact that “In any
interval Ai , there are no poles and zeros of f (ω)”.

As shown in Fig. 2a, the intervals {Ai } can be classified into two types by the sign
of f (ω) (ω ∈ Ai ). Their combinations are defined as A+ and A−.

A+ =
Mo−1⋃

i=1

{Ai : Sgn [ f (ω)] = +1, ω ∈ Ai } ,

A− =
Mo−1⋃

i=1

{Ai : Sgn [ f (ω)] = −1, ω ∈ Ai } . (17)

�	

3.2 Optimization with infinitesimal spectral resolution

Here we assume that the spectral resolution of the pulse is infinitesimal. Hence it is
possible to change the pulse phase at any frequency. According to Eqs. (2), (6) and
(9), the total transition amplitude is
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(a) (b)

Fig. 2 (Color online) The schematic diagram of Sgn[ f (ω)] and φ(ω) versus ω with infinitesimal spectral
resolution. Here α1, α2, . . . , αi , . . . , αMo are are the characteristic frequencies in ascending order. a In
each interval Ai (i.e. (αi , αi+1)), Sgn[ f (ω)] is always the same (+1 colored with green or −1 with red).
b The optimal phase function φ(ω) in Eq. (21) maximizing |U |. WithinA+, φ(ω) is set to be +π/2; while
inA−, φ(ω) is equal to −π/2

U = − π

N∑

n=1

υnh (ωn) g (ωn) + i℘
∫ ∞

ω f g/2
g (ω) h (ω) f (ω) dω

= − π

N∑

n=1

υnh (ωn) g (ωn) + i℘
∫

A−
⋃A+

h (ω) g (ω) f (ω) dω

= − π

N∑

n=1

υnh (ωn) g (ωn) + i℘
∫

A+
h (ω) g (ω) | f (ω)| dω

− i℘
∫

A−
h (ω) g (ω) | f (ω)| dω. (18)

Since υn > 0, g(ω) > 0 and |h(ω)| ≤ 1, we can easily maximize |U |,

|U |max = π

N∑

n=1

υng (ωn) + ℘

∫ ∞

ω f g/2
g (ω) | f (ω)| dω, (19)

with the following conditions

h (ω) =

⎧
⎪⎨

⎪⎩

+1 ω ∈ P>,

−i ω ∈ A−,

+i ω ∈ A+.

(20)

Thenb(ω) andφ(ω) can be obtained according to h(ω) = b(ω)b(ω̂)eiφ(ω)eiφ(Oω).With-
out loss of generality, we assume b(ω) = 1 and φ(ω) = 0 when ω ∈ (−∞, ω f g/2),
and have

b (ω) = 1, ω ∈ (
ω f g/2,+∞)

,

φ (ω) =

⎧
⎪⎨

⎪⎩

0 ω ∈ P>,

−π/2 ω ∈ A−,

+π/2 ω ∈ A+.

(21)
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The schematic diagram of φ(ω) is shown in Fig. 2b.
So there are just three steps in the optimal scheme to maximize |U | when we could

modulate the pulse at any frequency with infinitesimal resolution:
Step 1: Determine all poles and zeros of f (ω), then arrange them in ascending

order to form a sequence To.
Step 2: Divide the frequency domain greater thanω f g/2 into two types of intervals:

A− and A+.
Step 3: Obtain the optimal conditions maximizing |U | according to Eq. (21).

3.3 Optimization with finite spectral resolution

In last section, we assume that we could control the pulse at any frequency. However,
in experiments, there should be a limitation. It is only possible to change the phase
and amplitude simultaneously in a neighbor around a frequency. The limitation leads
to necessary modifications of the optimal scheme in Eq. (21) according to the spectral
resolution in experiments.

Assuming that βi is one of the M2 elements in P>, we can define a small deleted
neighborhood of the singular point βi ,

V̊ (βi , δ) = {ω : 0 < |ω − βi | ≤ δ} , (22)

V̊ =
M2⋃

i=1

V̊ (βi , δ) . (23)

Here δ depends on the spectral resolution. Phases and amplitudes are the same within
V̊(βi , δ) (i.e. h(ω) = h(βi ) when ω ∈ V̊(βi , δ)). The non-resonant integration within
V̊(βi , δ) can thus be written as

i℘
∫ βi+δ

βi−δ

h (ω) g (ω) f (ω) dω =ih (βi ) ℘

∫

V̊(βi ,δ)

g (ω) f (ω) dω

=ih (βi )Uβi .

A new function J (ω) is defined to distinguish the poles.

J (ω) =
{
0 ω /∈ P>,

1 ω ∈ P>.
(24)

And an interval can be defined accordingly.

Bi = (αi + J (αi ) · δ, αi+1 − J (αi+1) · δ) , (25)

with αi , αi+1 defined in Eq. (14).
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(a) (b)

Fig. 3 (Color online) The schematic diagram of Sgn[ f (ω)] and φ(ω) versus ω with infinitesimal spec-
tral resolution. Here α1, α2, . . . , αi , . . . , αMo are the characteristic frequencies in ascending order. a The

intervals are classified into three types: B+ colored with green, B− colored with red, and V̊(βi , δ) labeled
with gray. Sgn[ f (ω)] is equal to 1 within B+ and −1 within B−. V̊(βi , δ) is a small deleted neighborhood
of the poles (e.g. α2, α4 and αM0−1). b The optimal phase φ(ω) in Eq. (34) maximizing |U |. Within B+
and B−, φ(ω) are set to be +π/2 and −π/2 respectively, while in V̊(βi , δ), and φ(ω) is equal to θi

As shown in Fig. 3a, the intervals {Bi } can also be classified by the sign function.

B− =
M2⋃

i=1

{Bi : Sgn [ f (ω)] = −1, ω ∈ Bi } ,

B+ =
M2⋃

i=1

{Bi : Sgn [ f (ω)] = +1, ω ∈ Bi } . (26)

To determine the optimal phase within V̊(βi , δ), an identification function X (ω, βi )

is defined.
X (ω, βi ) =

{
1 if (ω − βi )

(
ω̂ − βi

) = 0,

0 if (ω − βi )
(
ω̂ − βi

) �= 0.
(27)

Intervals B−, B+ and V̊(βi , δ) all contribute to the sum amplitude U .

U = − π

N∑

n=1

υnh (ωn) g (ωn) + i℘
∫ ∞

ω f g/2
h (ω) g (ω) f (ω) dω

= − π

N∑

n=1

υnh (ωn) g (ωn) + i℘
∫

B−
⋃B+

⋃ V̊
h (ω) g (ω) f (ω) dω

= − π

N∑

n=1

υnh (ωn) g (ωn) + i
M2∑

i=1

h (βi )Uβi + i℘
∫

B−
⋃B+

h (ω) g (ω) f (ω) dω

= −
M2∑

i=1

h (βi )

[
π

N∑

n=1

X (ωn, βi ) υng (ωn) − iUβi

]

+ i℘
∫

B−
⋃B+

h (ω) g (ω) f (ω) dω. (28)
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The first term contains the non-resonant integration within V̊(βi , δ) and the resonant
terms coupling with characteristic frequencies {βi }, which can be written in the polar
coordinate frame.

li exp {−iθi } = π

N∑

n=1

X (ωn, βi ) υng (ωn) − iUβi ,

with

li =
√[

π
∑N

n=1
X (ωn, βi ) υng (ωn)

]2
+ (

Uβi

)2
, (29)

tan θi = Uβi

π
∑N

n=1 X (ωn, βi ) υng (ωn)
. (30)

Then Eq. (28) becomes

U = −
M2∑

i=1

h (βi ) li exp {−iθi } + i℘
∫

B−
⋃B+

h (ω) g (ω) f (ω) dω

= −
M2∑

i=1

h (βi ) li exp {−iθi } − i
∫

B−
h (ω) g (ω) | f (ω)| dω

+ i
∫

B+
h (ω) g (ω) | f (ω)| dω. (31)

Since li > 0, g(ω) > 0 and |h(ω)| ≤ 1, we can easily maximize |U | as

|U |max =
M2∑

i=1

li +
∫

B−
⋃B+

g (ω) | f (ω)| dω, (32)

when

h (ω) =

⎧
⎪⎨

⎪⎩

exp {iθi } ω ∈ V̊ (βi , δ) ,

−i ω ∈ B−,

+i ω ∈ B+.

(33)

With h(ω) = b(ω)b(ω̂)eiφ(ω)eiφ(ω̂), b(ω) and φ(ω) can be obtained accordingly

b (ω) = 1, ω ∈ (
ω f g/2,+∞)

,

φ (ω) =

⎧
⎪⎨

⎪⎩

θi ω ∈ V̊ (βi , δ) ,

−π/2 ω ∈ B−,

+π/2 ω ∈ B+.

(34)

Without losing generality, we assume b(ω) = 1 and φ(ω) = 0 when ω ∈
(−∞, ω f g/2).

123



J Math Chem

The schematic diagram of φ(ω) is shown in Fig. 3b. It is noted that θi = O(δ)

according to Eq. (30), since Uβi = ∫
V̊(ωn ,βi )

g(ω) f (ω)dω = O(δ). Thus θi equals to
zero approximately, when δ is small enough.

So there are four steps in the optimal scheme to maximize |U | with finite spectral
resolution:

Step 1: Determine all poles and zeros of f (ω), then arrange them in ascending
order to form a sequence To.

Step 2: According to the spectral resolution in experiments, specify δ and V̊(βi , δ).
Step 3:Divide the frequency domain greater thanω f g/2 into three types of intervals:

B−, B+ and V̊ .
Step 4: Obtain the optimal conditions maximizing |U | according to Eq. (34).

4 Optimal control of a special system

In this section, we consider the optimal control of a special system with multiple
two-photon transitions. The system has the structure as shown in Fig. 1, but all of its
first transition frequencies, ω1, ω2, . . . , ωN , are larger than ω f g/2. Without loss of
generality, we assume ω f g/2 < ω1<ω2 < · · · < ωN . We will prove that, for this
special system, all zeros of Eq. (10) are real. This property makes the control scheme
of this system quite simple.

Equation (10) can be rewritten as

f (ω) =
N∑

n=1

υn
(
ω̂n − ωn

)

(ωn − ω)
(
ω̂n − ω

)

= fup (ω)

fdw (ω)
, (35)

with

fup (ω) =
N∑

n=1

λn

⎧
⎨

⎩

N∏

i=1;i �=n

(ω − ωi )
(
ω − ω̂i

)
⎫
⎬

⎭ ,

fdw (ω) =
N∏

n=1

(ω − ωn)
(
ω − ω̂n

)
,

λn = υn
(
ω̂n − ωn

)
. (36)

Here fup(ω) is a 2(N − 1) degree real-polynomial, with the coefficient of ω2(N−1)

being
∑N

n=1 λn . It is continuous in the whole frequency domain (i.e. (−∞,∞)) and
axis-symmetric about ω = ω f g/2.

The set P> for this special system is

P> = {ω1, ω2, . . . , ωN } . (37)
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We have

fup (ωI ) = λI

N∏

i=1;i �=I

(ωI − ωi )
(
ωI − ω̂i

)
, (38)

which leads to

Sgn
[
fup (ωI )

] = (−1)N−I+1 , I = 1, 2, . . . , N . (39)

It is easy to obtain Sgn[ f (ωI ) f (ωI+1)] = −1. Since fup(ω) is continuous, there
are at least one real root between ωI and ωI+1 for fup(ω) = 0. The axis-symmetric
feature of fup(ω) leads to the fact that there are also at least one real root in the interval
(ω̂I+1, ω̂I ). Therefore, there are totally at least 2(N − 1) real roots. As known from
fundamental theorem of algebra, every non-zero, single-variable, degree n polynomial
with complex coefficients has, counted with multiplicity, exactly n roots. So fup(ω) =
0 has 2(N − 1) roots, and it will just have 2(N − 1) real roots, with only one real root
in each interval (ωI , ωI+1) or (ω̂I+1, ω̂I ).

Z> and To are

Z> = {x1, x2, . . . , xN−1} , (40)

To = {
ω f g/2, ω1, x1, . . . , ωN−1, xN−1, ωN ,∞}

, (41)

with xi being the real root in the interval (ωI , ωI+1), which is certainly larger than
ω f g/2.

The sign of f (ω) can be determined systematically. For instance, according to Eq.
(10), when ω ∈ (xi , ωi+1), we have

Sgn [ f (ω)] = Sgn

[
lim

ω→ω−
i+1

f (ω)

]

= Sgn

[
lim

ω→ω−
i

1

ωi+1 − ω

]

= +1. (42)

Similarly, when ω ∈ (ωi , xi ), we have

Sgn [ f (ω)] = Sgn

[
lim

ω→ω+
i

f (ω)

]

= Sgn

[
lim

ω→ω+
i

1

ωi − ω

]

= −1. (43)
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(a) (b)

Fig. 4 (Color online) The schematic diagramof f (ω) and the three types of intervals for the specific system.
a f (ω) is larger than zero in each of the intervals (ω f g/2, ω1) and (xi , ωi+1). In the other intervals, it is
less than zero. {ω1, ω2, . . . , ωN } are the poles and {x1, x2, . . . , xN−1} are the zeros. bWithin the intervals
B+ (green color), f (ω) > 0; while in B− (red color), f (ω) < 0. V̊ consists of N gray regions, with each
corresponds to a deleted neighborhood of a pole point

Therefore, f (ω) changes its sign at its poles and zeros, which is clearly shown in
Fig. 4a. The three types of intervals can be determined as

V̊ =
N⋃

i=1

V̊ (ωi , δ) ,

B+ = (
ω f g/2, ω1 − δ

)⋃
[
N−1⋃

i=1

(xi , ωi+1 − δ)

]
,

B− =
[
N−1⋃

i=1

(ωi + δ, xi )

]
⋃

(ωN + δ,∞) . (44)

The optimal phases of these intervals can be obtained according to Eq. (34).
Numerical simulation is demonstrated by a five-level system shown in Fig. 5. The

laser field is assumed as a Gaussian envelope.1

G (ω) = b0 exp

{
− (ω − ω0)

2

2Δ2

}
. (45)

The simulation results are listed in Table 1 which shows an enhancement of 6.8
times in the two-photon transitions compared with the transform limited (TL) pulse.

1 The parameters of the five level system are υ1 = 1.1590, υ2 = 1.1615, υ3 = 1.2508, ω1 = 0.059 50,
ω2 = 0.060 10, ω3 = 0.060 70, ω f g = 0.1180 and δ = 10−9. The parameters of laser pulse are ω0 =
0.05826, Δ = 0.001423 and b0 = 0.0006. Here b0 is a constant which small enough to make sure that the
light-matter interaction is perturbative. The parameters above all use atomic unit.
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Fig. 5 (Color online) The
schematic diagram of a
five-level system with
ω f g/2 < ω1 < ω2 < ω3

Table 1 Two-photon transition amplitudes of the five-level system in Fig. 5

Control scheme Ur Unr U |U |
TL pulse −4.723 4.409i −4.723 + 4.409i 6.461

Optimal pulse −4.723 −39.302 −44.025 44.025

The TL pulse means no pulse shaping (i.e. b(ω) = 1 , φ(ω) = 0). The optimal pulse scheme is shown like
Fig. 4b. For simplicity, all the values are reduced by a factor of b20

5 Conclusions and discussions

The optimal control of multiple two-photon transitions is investigated in this work.
Via the boundaries analysis of Silberberg’s expression [5], the optimal control scheme
is determined step by step accurately. For experimental consideration, the whole fre-
quency domain is divided into different types of spectral intervals according to the real
poles and zeros of f (ω) and the spectral resolution. The scheme is optimal because
it tries to achieve the maximal interferences between different transition terms under
experimental spectral resolution consideration. A special case with all the transition
frequencies from the initial state to the intermediate states are larger than half of the
transition from the initial to final state is employed for demonstration. Due to its spe-
cial energy level structure, the number of zeros and the sign of f (ω) in each spectral
interval can be determined analytically. Numerical simulation shows that a rather good
effect can be achieved with this scheme.

The optimal control of multiple two-photon transitions can be achieved in exper-
iments approximately with our strategy. The key step is to determine the spectral
boundaries, around which the phase changes its value. The boundaries include the
poles and real zeros of the rational fractional function f (ω). For a system with N
intermediate states, the boundaries include N poles, which are the resonant transition
frequencies and can be measured as spectral peaks by sweeping a spectral π -phase
step [10], at most N −1 real zeros, and half of the transition from the initial state to the
target state. So the number of spectral blocks in our strategy is 2 ∗ N at most, which
means that the complexity of our phase-modulating strategy increases linearly with
the number of pathways. Besides, the real zeros only depends on the ratio of transition
dipoles along different pathways, not on their absolute values. The case of N = 2 can
be seen as an accurate version of the scheme proposed in Ref. [10] (i.e. the real zeros
are determined more accurately in our scheme), which has proven its effectiveness in
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the quantum interference control of atomic Rb. Both the two schemes have four phase
variables and thus have the same implementation complexity. Therefore, our strategy
can probably provide a quasi-optimal solution, even considering the uncertainties and
noises in experiments.
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