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The manipulation of two 2nd-order quantum pathways has been successfully demonstrated
experimentally in atomic Rubidium. This work would explore the coherent control of path-
ways in the quantum system with N intermediate states connecting the initial and target
states. A 4N -block scheme is proposed to control the N 2nd-order pathways which are driven
by a weak broadband pulse. The model with N=3 is given as an example to demonstrate
our strategy. In this scheme, boundaries of the spectral blocks are functions of the resonant
frequencies, and the resonant and non-resonant contributions interfere mutually to achieve
the quantum pathway control effectively. The simple strategy may provide a practical choice
for pathway manipulation experiments since there are only 2N phase variables to adjust.
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I. INTRODUCTION

Due to its scientific importance and potential applica-
tions, quantum dynamics control has been an attractive
field [1–5]. In many laser experiments, coherent control
of an observable is often achieved by adjusting the inter-
ference among different quantum pathways [6, 7]. Thus,
it is important to investigate pathway manipulation in
quantum systems. Recently, Rey-de-Castro et al. have
successfully controlled the ratio of two 2nd-order quan-
tum pathways in Rubidium [8]. Their experiments show
that the quantum pathway dynamics can be steered to-
wards the desired direction by phase shaping of broad-
band femtosecond pulses. We have also investigated the
cooperation and competition between pathways in the
the optimal control of Rubidium [9].

Silberberg et al. have proposed that a resonant two-
photon absorption (TPA) rate can be enhanced via
constructive interference between resonant and non-
resonant contributions [10]. In their work, a three-level
ladder configuration is employed with only one 2nd-
order pathway involved. Based on Silberberg’s work,
Lee et al. have proposed an eight-block scheme to max-
imize the fluorescence signal from the target state for a
four-level diamond configuration system with two 2nd-
order pathways involved [11].

In this work, we further study the manipulation
of multiple 2nd-order pathways. Compared with the
transform limited pulses (TLPs), the 4N block scheme
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with only 2N phase variables to adjust can achieve
much better effects, as illustrated by an example with
three intermediate states.

II. THEORETICAL MODEL

We consider a quantum system with N intermediate
states connecting the initial stand target states. The
Hamiltonian is the form of H=H0−µE(t), where H0 is
the unperturbed Hamiltoni with eigenstates |lp⟩ (p=0,
1, . . ., N , N +1), µ is the dipole moment operator, and
E(t) is the control field. In the basis {|lp⟩}, the matrices
H0 and µ are given by

H0 =



0 0 0 · · · 0 0
0 ω1 0 · · · 0 0
0 0 ω2 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · ωN 0
0 0 0 · · · 0 ωN+1

 (1)

µ =



0 µ1 µ2 · · · µN 0
µ1 0 0 · · · 0 µ′

1

µ2 0 0 · · · 0 µ′
2

...
...

... · · ·
...

...
µN 0 0 · · · 0 µ′

N
0 µ′

1 µ′
2 · · · µ′

N 0

 (2)

where atomic units are adopted with ~=1. The initial
state is |l0⟩ with zero energy, and the target state is
|lN+1⟩ with energy ωN+1. There are N intermediate
states |lp⟩ (p=1, . . ., N). An example system with N=3
is shown in Fig.1(a).

The dynamics in the interaction representation are
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FIG. 1 (a) Energy level structure of the example sys-
tem. The three 2nd-order pathways are |l0⟩→|l1⟩→|l4⟩,
|l0⟩→|l2⟩→|l4⟩, and |l0⟩→|l3⟩→|l4⟩. (b) Spectrum of the
laser pulse (E0(ω) in Eq.(8)) employed in our theoretical
studies. The spectrum is divided into 12 blocks in our strat-
egy, and the vertical lines indicate the spectral boundaries.
Each block has a constant phase.

governed by

i
dUI(t)

dt
= VI(t)UI(t) (3)

where UI(t) is the evolution operator and

VI(t) = − exp(iH0t)µE(t) exp(−iH0t) (4)

In the perturbation regime, N 2nd-order pathways,
|l0⟩→|lp⟩→|lN+1⟩ (p=1, · · · , N), dominate the excita-
tion from the initial state |l0⟩ to the target state |lN+1⟩.
The corresponding amplitudes are given by the follow-
ing N 2nd-order Dyson expansion terms of UI(t),

Up(T ) = −µpµ
′
p

∫ T

−∞
exp[i (ωN+1 − ωp) t2]E(t2) ·

∫ t2

−∞
exp[iωpt1]E(t1)dt1dt2,

p = 1, 2, · · · , N (5)

The final amplitude of each pathway after the pulse
is over (T→∞) can be written in the frequency domain
as combination of resonant part Ur

p and non-resonant
part Unr

p [10]

Up(T → ∞) = Ur
p + Unr

p

= µpµ
′
p

[
− πE(ωp)E(ωN+1 − ωp) +

i℘

∫ ∞

−∞

E(ω)E(ωN+1 − ω)

ωp − ω
dω

]
(6)

here ℘ is the principal value of Cauchy. Then the total
transition probability from the initial state |l0⟩ to the
target state |lN+1⟩ after the pulse being off is

Pf = |⟨lN+1|UI(T → ∞, 0)|l0⟩|2

≈

∣∣∣∣∣
N∑

p=1

Up(T → ∞)

∣∣∣∣∣
2

T→∞

(7)

III. PATHWAY MANIPULATION STRATEGY

To mimic the experimental conditions, a laser field
with a Gaussian envelope is employed in our studies:

E(ω) = E0(ω) exp iφ(ω) (8)

E0(ω) = B exp

[
−(ω − ω0)

2

△2

]
exp[iφ(ω)] (9)

here the parameter B is taken to be 0.0006 a.u., small
enough to make sure that the light-atom interaction is
perturbative. In our strategy, only the phase φ(ω) is
adjusted to control the quantum pathways.

As shown in Eq.(6), each pathway amplitude can be
divided into the resonant and non-resonant parts, and
thus it can be modulated by changing the interference
of these terms. Our pathway manipulation strategy is
based on this idea, and one five-level quantum system
will be used as an example in the following for demon-
stration.

The example system is shown in Fig.1(a) with the pa-
rameters in Eq.(1) and Eq.(2) being µ1=0.95, µ2=1.01,
µ3=1.1, µ′

1=1.22, µ′
2=1.15, µ′

3=1.06, ω1=0.0573
(∼795 nm), ω2=0.0579 (∼787 nm), ω3=0.0585
(∼779 nm), and ω4=0.118 (∼386 nm). The spectrum
of the laser pulse employed in our studies is shown in
Fig.1(b), with the central frequency ω0 and full width
at half maximum (FWHM) of the pulse being 0.0583
(∼782 nm) and 0.00335 (∼45 nm), respectively.

Three 2nd-order pathways, namely |l0⟩→|l1⟩→|l4⟩,
|l0⟩→|l2⟩→|l4⟩, and |l0⟩→|l3⟩→|l4⟩, dominate the pop-
ulation transfer from the initial state |l0⟩ to the target
state |l4⟩. The non-resonant term of the pth (p=1, 2,
3) pathway is

Unr
p = iµpµ

′
p℘

∫ ∞

−∞

{
E0(ω)E0(ω4 − ω)

ωp − ω
·

exp[iφ(ω)] exp[iφ(ω4 − ω)]

}
dω (10)

Then the total non-resonant contribution is
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Unr = i℘

∫ ∞

−∞
{f(ω)E0(ω)E0(ω4 − ω)

exp[iφ(ω)] exp[iφ(ω4 − ω)]}dω (11)

f(ω) =

3∑
p=1

µpµ
′
p

ωp − ω

= −(µ1µ
′
1 + µ2µ

′
2 + µ3µ

′
3) ·

(ω − ωc1)(ω − ωc2)

(ω − ω1)(ω − ω2)(ω − ω3)
(12)

where ωc1 and ωc2 are the two zero points of f(ω).
Thus f(ω) changes its plus-minus sign around five crit-
ical frequencies ω1, ωc1, ω2, ωc2 and ω3. The popula-
tion transfer is a two-photon process with the sum fre-
quency of the two photons being ω4. Eq.(6) indicates
that each pathway amplitude depends on the phase
function φ(ω)+φ(ω4−ω), which is symmetrically added
around ω4/2. Hence, we should add five more critical
frequencies which are symmetric about ω4/2 and get 11
critical frequencies totally, as shown in Fig.2. A sim-
ple strategy to coherently control the transition process
is to divide the spectrum into 12 blocks by these 11
critical frequencies, with the spectral blocks labeled as
B1, B2, · · · , B12, and each having a constant phase,

φ(ω) = φj , ω ∈ blockBj (13)

Then the individual and sum non-resonant contri-
butions will only depend on the combinational phase
φj + φ13−j :

Unr
p =

6∑
j=1

Unr
p,Bj

exp[i(φ̄j + φ̄13−j)] (14)

Unr =
6∑

j=1

Unr
Bj

exp[i(φ̄j + φ̄13−j)] (15)

with the term Unr
p,Bj

representing the pth pathway con-

tribution from blocks Bj and B13−j ,

Unr
p,Bj

= iµpµ
′
p

∫
Bj

∪
B13−j

E0(ω)E0(ω4 − ω)

ωp − ω
dω (16)

Unr
Bj

= i
3∑

p=1

Unr
p,Bj

(17)

Without loss of generality, we could set the phases of
the last six blocks to zero, then the non-resonant terms
depend on only phases of the first six blocks:

Unr
p =

6∑
j=1

Unr
p,Bj

exp(iφ̄j) (18)

Unr =
6∑

j=1

Unr
Bj

exp(iφ̄j) (19)

Therefore, the pathway amplitudes can be coherently
controlled by changing the six block phases. Our path-
way manipulation strategy is tested for six cases with
different objective functions with the results shown in
Table I.

From the top panel of Fig.2, the conditions to

maximize |U1|, |U2|, |U3|, and
∣∣∣∑

p

Up

∣∣∣ can be eas-

ily extracted: φ1=π/2 and φ2=φ3=φ4=φ5=φ6=−π/2
for |U1| maximization; φ1=φ2=φ3=π/2 and φ4=φ5=
φ6=−π/2 for |U2| maximization; φ1=φ2=φ3=φ4=
φ5=π/2 and φ6=−π/2 for |U3| maximization; φ1=φ3=

φ5=π/2 and φ2=φ4=φ6=−π/2 for
∣∣∣∑

p

Up

∣∣∣ maximiza-

tion. In consistent with the above analysis, Table I
shows nearly the same simulation results for the first
four cases, in which a finite difference-based gradient
method is employed in the optimization. For the last
three cases, the objective functions are chosen to be
the pathway ratios to redirect the dynamics to desired
pathways. The simulations turn out that we could
keep the amplitude of the desired pathway the same
order of magnitude as its maximal value in the first
three cases, while suppressing the amplitudes of the
other two pathways by several orders of magnitude.
For example, in last column, amplitude of pathway
3 is 3.8636×10−5, which is just a little smaller than
5.1419×10−5, the best amplitude we could get, while
the amplitude of pathways 1 and 2 are suppressed to less
than 4×10−11. For TLPs, the pathway amplitudes are
5.4079×10−7 (|U1|), 7.0474×10−7 (|U2|), 8.2938×10−7

(|U3|) and 1.9726×10−6
(∣∣∣∑

p

Up

∣∣∣). Compared with

TLPs, the objective functions can be improved by sev-
eral orders of magnitude, which validates the success of
this simple pathway manipulation strategy.

Above strategy can be extended to quantum systems
with N intermediate states (|lp⟩, p=1, . . . , N) connect-
ing the initial (|l0⟩) and target (|lN+1⟩) states. The
procedures can be summarized as the following three
steps: (i) The phases at the resonant frequencies ωp and
ωN+1−ωp are set to be zero. (ii) The whole spectrum is
divided into 4N blocks, with the boundaries being ωp,
ωN+1−ωp, ωN/2, ωc, and ωN+1−ωc, where ωc satisfies,

N∑
p=1

µpµ
′
p

ωp − ωc
= 0 (20)

(iii) Only those of the first spectral 2N blocks are
optimized, while the phases of the last 2N spectral
blocks are fixed to zero. The strategy can effectively
manipulate quantum control pathways via changing
only 2N phase variables. It is simple and thus easy to
implement in the experiments.
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FIG. 2 (a) For transform limited pulses with zero phases in all blocks, the resonant and non-resonant terms of the sum and
individual pathway amplitudes are shown in the complex plane. (b) In our strategy, the whole spectrum is divided into
12 blocks, with the boundaries ω1, ωc1, ω2, ωc2, ω3, ω4/2, ω4−ω3, ω4−ωc2, ω4−ω2, ω4−ωc1 and ω4−ω1. The non-resonant
terms are decomposed into 6 parts (B1, B2, . . ., B6 in (a)), with each part Bj corresponding to contributions from two
paired spectral blocks Bj and B13−j , as shown in Eq.(16). The signs of the integral kernels of different non-resonant terms
are indicated for each spectral block.

TABLE I The optimization results under different objective functions. Here cons. denotes a constant small enough, which
is taken to be 1.0×10−8 in our simulations.

|U1| |U2| |U3| |U1+U2+U3|
|U1|

|U2|+|U3|+cons.

|U2|
|U1|+|U3|+cons.

|U3|
|U1|+|U2|+cons.

(Case I) (Case II) (Case III) (Case IV) (Case V) (Case VI) (Case VII)

φ1 0.5000π 0.5000π 0.5000π 0.5000π 0.4868π −0.0119π 0.1644π

φ2 −0.5000π 0.5000π 0.5000π −0.5000π −0.4318π −0.0140π 0.1777π

φ3 −0.5000π 0.5000π 0.5000π 0.5000π 0.4151π 0.6296π −0.0486π

φ4 −0.5000π −0.5000π 0.5000π −0.5000π 0.4221π −0.2908π −0.0390π

φ5 −0.5000π −0.5000π 0.5000π 0.5000π 0.1727π 0.4782π 0.4797π

φ6 −0.5000π −0.5000π −0.5000π −0.5000π 0.1834π 0.4768π −0.9777π

|U1| 1.4323×10−5 3.9295×10−7 3.0251×10−8 1.3882×10−5 1.3284×10−5 4.6584×10−11 3.8258×10−11

|U2| 1.0438×10−6 3.2291×10−5 4.7377×10−7 3.2106×10−5 1.0725×10−10 3.1308×10−5 1.1819×10−11

|U3| 1.1013×10−6 1.1852e×10−6 5.1419×10−5 5.0921×10−5 3.4529×10−11 9.3307×10−11 3.8636×10−5

|U1+U2+U3|1.6469×10−5 3.3869×10−5 5.1923×10−5 9.6909×10−5 1.3284×10−5 3.1308×10−5 3.8636×10−5

IV. CONCLUSION

Coherent control of pathway is investigated in the
perturbation regime for quantum systems with N inter-
mediate states connecting the initial and target states,
and a simple but effective strategy is proposed. In the
strategy, the overall spectrum is divided into 4N blocks,
and only the phases of the first 2N blocks are optimized.

An example with N=3 is given for demonstration. The
strategy provides a practical choice for pathway manip-
ulation in the optimal control experiments. It has to
be noted that there are at most N−1 critical frequen-
cies that fulfill Eq.(20) and lead to 4N spectral blocks.
If Eq.(20) has less than N−1 real roots, the number
of spectral blocks could be less than 4N , and further
discussion is necessary.
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